<!DOCTYPE html><html lang="en" xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" style="font-size:16px;"><head></head><head><meta charset="utf-8"/><!--[if !mso]><!--><meta http-equiv="X-UA-Compatible" content="IE=edge"/><!--<![endif]--><meta name="viewport" content="width=device-width,initial-scale=1"/><meta name="x-apple-disable-message-reformatting"/><meta name="format-detection" content="telephone=no,address=no,email=no,date=no,url=no"/><meta name="color-scheme" content="light"/><meta name="supported-color-schemes" content="light"/><title>Depth Anything 3: Recovering the Visual Space from Any Views</title><!--[if mso]><xml><o:OfficeDocumentSettings><o:AllowPNG/><o:PixelsPerInch>96</o:PixelsPerInch></o:OfficeDocumentSettings></xml><![endif]--><style>
:root { color-scheme: light; supported-color-schemes: light; }
body { margin: 0; padding: 0; min-width: 100%!important; -ms-text-size-adjust: 100% !important; -webkit-transform: scale(1) !important; -webkit-text-size-adjust: 100% !important; -webkit-font-smoothing: antialiased !important; }
.body { word-wrap: normal; word-spacing:normal; }
table.mso { width: 100%; border-collapse: collapse; padding: 0; table-layout: fixed; }
img { border: 0; outline: none; }
table { mso-table-lspace: 0px; mso-table-rspace: 0px; }
td, a, span { mso-line-height-rule: exactly; }
#root [x-apple-data-detectors=true],
a[x-apple-data-detectors=true],
#MessageViewBody a { color: inherit !important; text-decoration: inherit !important; font-size: inherit !important; font-family: inherit !important; font-weight: inherit !important; line-height: inherit !important; }
span.MsoHyperlink { color: inherit !important; mso-style-priority: 99 !important; }
span.MsoHyperlinkFollowed { color: inherit !important; mso-style-priority: 99 !important; }
.a { background-color:#dedede; }
.b { background-color:#2a2a2a; }
.c { background-color:#ffffff; }
.d { background-color:#fff0c8; }
.d2 { background-color:#FFFFFF; }
.d3 { background-color:#FFFFFF; }
h1 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h2 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h3 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h4 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h5 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h6 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h1, h1 a, h2, h2 a, h3, h3 a, h4, h4 a, h5, h5 a, h6, h6 a, ul, li, ol, p, p a { margin: 0;padding: 0; }
h1 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:700;font-size:28px;color:#2A2A2A;line-height:42px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
h2 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:700;font-size:24px;color:#2A2A2A;line-height:36px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
h3 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:20px;color:#2A2A2A;line-height:30px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
h4 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:18px;color:#2A2A2A;line-height:27px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
h5 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:16px;color:#2A2A2A;line-height:24px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
h6 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:14px;color:#2A2A2A;line-height:21px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
p { font-family:'Georgia','Times New Roman',serif;font-weight:400;color:#2D2D2D;font-size:16px;line-height:24px;padding-bottom:8px;padding-top:8px;mso-margin-top-alt:8px;mso-margin-bottom-alt:8px; }
p a, .e a, ul a, li a, .h a, .h2 a, .h3 a { word-break:break-word;color:#2C81E5 !important;text-decoration:none;font-style:italic; }
p a span, .e a span, ul a span, li a span { color: inherit }
p .bold { font-weight:bold;color:#2D2D2D; }
p span[style*="font-size"] { line-height: 1.6; }
.f p { font-size:12px;line-height:15px;color:#2D2D2D;padding:0; }
.f p a { color:#2D2D2D !important; }
.g p { font-family:'Helvetica',Arial,sans-serif;font-size:14px;line-height:20px;font-weight:normal;margin:0; }
.g p a { text-decoration: underline; }
.i p { font-family:'Helvetica',Arial,sans-serif;line-height:23px;font-size:15px;color:#2D2D2D; }
.i p a { color:#2D2D2D !important; }
.i2 p { font-family:'Helvetica',Arial,sans-serif;line-height:23px;font-size:15px;color:#2D2D2D; }
.i2 p a { color:#2D2D2D !important; }
.i3 p { font-family:'Helvetica',Arial,sans-serif;line-height:43px;font-size:24px;color:#2D2D2D; }
.i3 p a { color:#2D2D2D !important; }
.h p a { color:#595959 !important; }
.h2 p a { color:#595959 !important; }
.h3 p a { color:#595959 !important; }
.f p a, .i p a, .i2 p a, .i3 p a, .h p a, .h2 p a, .h3 p a { text-decoration:underline; }
.j { border-top:3px solid #ffeb2d; }
.k p { padding-left:15px;padding-bottom:0px;padding-top:6px;mso-margin-top-alt:6px;mso-margin-bottom-alt:0px;mso-margin-left-alt:15px; }
.o { background-color:#FFFFFF;border:1px solid #F1F1F1;border-radius:5px; }
.o p { font-family:'Helvetica',Arial,sans-serif;padding:0px;margin:0px; }
.l p,
.l p a, .l a { font-size:14px;line-height:20px;font-weight: bold;color:#2D2D2D;padding-bottom:6px;mso-margin-bottom-alt:6px;text-decoration:none; }
.m p,
.m p a { font-size:13px;line-height:18px;font-weight:400;color:#2D2D2D;padding-bottom:6px;mso-margin-bottom-alt:6px;text-decoration:none; }
.n p,
.n p a { font-size:12px;line-height:17px;font-weight:400;color:#2D2D2D;padding-bottom:6px;mso-margin-bottom-alt:6px;text-decoration:none; }
.p { background-color:#FFFFFF;max-width:520px;border:1px solid #E1E8ED;border:1px solid rgba(80, 80, 80, 0.3);border-radius:5px; }
.q { font-size:16px;font-family:Helvetica,Roboto,Calibri,sans-serif !important;border:1px solid #e1e8ed;border:1px solid rgba(80, 80, 80, 0.3);border-radius:10px;background-color:#FFFFFF; }
.q p { font-size:16px;font-family:system-ui,Helvetica,Roboto,Calibri,sans-serif !important;color:#222222;padding:4px 0; }
.r { border:1px solid #E1E8ED !important;border-radius:5px; }
.s p { font-size: 14px; line-height: 17px; font-weight: 400; color: #697882; text-decoration: none; }
.t p { font-family:'Helvetica',Arial,sans-serif;font-size:12px;line-height:18px;font-weight:400;color:#000000;font-style:italic;padding:4px 0px 0px; }
.v { border-radius:10px;border:solid 0px #DFD150;background-color:#2C81E5;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;color:#FFFFFF; }
.v a { text-decoration:none;display:block;color:#FFFFFF; }
.w p { font-size:12px;line-height:15px;font-weight:400;color:#FFFFFF; }
.w p a { text-decoration: underline !important;color:#FFFFFF !important; }
ul { font-family:'Helvetica',Arial,sans-serif;margin:0px 0px 0px 25px !important;padding:0px !important;color:#2D2D2D;line-height:24px;list-style:disc;font-size:16px; }
ul > li { font-family:'Helvetica',Arial,sans-serif;margin:10px 0px 0px 0px !important;padding: 0px 0px 0px 0px !important; color: #2D2D2D; list-style:disc; }
ol { font-family:'Helvetica',Arial,sans-serif;margin: 0px 0px 0px 25px !important;padding:0px !important;color:#2D2D2D;line-height:24px;list-style:decimal;font-size:16px; }
ol > li { font-family:'Helvetica',Arial,sans-serif;margin:10px 0px 0px 0px !important;padding: 0px 0px 0px 0px !important; color: #2D2D2D; }
.e h3,
.e p,
.e span { padding-bottom:0px;padding-top:0px;mso-margin-top-alt:0px;mso-margin-bottom-alt:0px; }
.e span,
.e li { font-family:'Helvetica',Arial,sans-serif;font-size:16px;color:#2D2D2D;line-height:24px; }
.rec { font-family: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji" !important; }
.rec__button:hover { background-color: #f9fafb !important; }
.copyright a {color: inherit !important; text-decoration: none !important; font-size: inherit !important; font-family: inherit !important; font-weight: inherit !important; line-height: inherit !important;}
.txt_social p { padding: 0; word-break: break-all; }
.table, .table-c, .table-h { border: 1px solid #C0C0C0; }
.table-c { padding:5px; background-color:#FFFFFF; }
.table-c p { color: #2D2D2D; font-family:'Helvetica',Arial,sans-serif !important;overflow-wrap: break-word; }
.table-h { padding:5px; background-color:#F1F1F1; }
.table-h p { color: #2A2A2A; font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif !important;overflow-wrap: break-word; }
@media only screen and (max-width:667px) {
.aa, .w100pc { width: 100% !important; }
.bb img { width: 100% !important; height: auto !important; max-width: none !important; }
.cc { padding: 0px 8px !important; }
.ee { padding-top:10px !important;padding-bottom:10px !important; }
.ff ul, .ff ol { margin: 0px 0px 0px 10px !important;padding: 0px !important; }
.ff li { margin:10px 0px 0px 10px !important; }
.r {height:140px !important;}
.s p { font-size:13px !important;line-height:15px !important; }
.mob-hide {display:none !important;}
.mob-show {display: block !important; width: auto !important; overflow: visible !important; float: none !important; max-height: inherit !important; line-height: inherit !important;}
.mob-stack {width:100% !important;display:block !important;}
.mob-w-full {width:100% !important;}
.mob-block {display:block !important;}
.embed-img {padding:0px 0px 12px 0px !important;}
.socialShare {padding-top:15px !important;}
.rec { padding-left:15px!important;padding-right:15px!important; }
.bodyWrapper { padding:7px 4px 7px 4px !important; }
.social-mobile {float:left !important;margin-top:10px !important;}
}
@media screen and (max-width: 480px) {
u + .a .gg { width: 100% !important; width: 100vw !important; }
.tok-heart { padding-top:75% !important; }
.tok-play { padding-top: 250px !important; }
}
@media screen and (max-width: 320px) {
.tok-heart { padding-top:65% !important; }
}
.u { border: 1px solid #CACACA !important; border-radius: 2px !important; background-color: #ffffff !important; padding: 0px 13px 0px 13px !important; font-family:ui-sans-serif,system-ui,-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,"Noto Sans",sans-serif !important;font-size: 12px !important; color: #767676 !important; }
.u a { text-decoration: none; display: block !important; color: #767676 !important; margin: 0px !important; }
.u span, .u img { color: #767676 !important;margin:0px !important; max-height:32px !important;background-color:#ffffff !important; }
</style><!--[if mso]><style type="text/css">
h1, h2, h3, h4, h5, h6 {font-family: Arial, sans-serif !important;}
body, table, td, p, a, span {font-family: Arial, sans-serif !important;}
sup { font-size: 100% !important;vertical-align: .5em !important;mso-text-raise: -1.5% !important;line-height: 0 !important; }
ul { margin-left:0px !important; margin-right:10px !important; margin-top:20px !important; margin-bottom:20px !important; }
ul li { margin-left: 0px !important; mso-special-format: decimal; }
ol { margin-left:0px !important; margin-right:10px !important; margin-top:20px !important; margin-bottom:20px !important; }
ol li { margin-left: 0px !important; mso-special-format: decimal; }
li.listItem { margin-left:15px !important; margin-top:0px !important; }
.paddingDesktop { padding: 10px 0 !important; }
.edm_outlooklist { margin-left: -20px !important; }
.embedImage { display:none !important; }
</style><![endif]--><!-- __merge_tags_in_links__ --><style>
@font-face {
font-family: 'Open Sans';
font-style: normal;
font-weight: 700;
font-display: swap;
src: url('https://fonts.gstatic.com/s/opensans/v40/memSYaGs126MiZpBA-UvWbX2vVnXBbObj2OVZyOOSr4dVJWUgsg-1x4gaVIUwaEQbjA.woff2') format('woff2');
}
@font-face {
font-family: 'Open Sans';
font-style: italic;
font-weight: 700;
font-display: swap;
src: url('https://fonts.googleapis.com/css2?family=Open+Sans:ital,wght@1,700&display=swap') format('woff2');
}
</style></head><body class="a" style="margin:0px auto;padding:0px;word-wrap:normal;word-spacing:normal;background-color:#dedede;"><div role="article" aria-roledescription="email" aria-label="email_name" lang="en" style="font-size:1rem"><div style="display:none;max-height:0px;overflow:hidden;"> LeJEPA, The Path Not Taken, and more  ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ </div><table role="none" width="100%" border="0" cellspacing="0" align="center" cellpadding="0" class="gg"><tr><td align="center" valign="top"><table role="none" width="670" border="0" cellspacing="0" cellpadding="0" class="aa" style="width:670px;table-layout:fixed;"><tr><td class="bodyWrapper" align="center" valign="top" style="padding:7px 7px 7px 7px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top" style="border-width:0px 0px 0px 0px;border-style: solid; border-color: #2a2a2a;border-radius:10px 10px 0px 0px;background-color:#ffffff;" class="c"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr id="header"><td style="padding:15px 15px 0px 15px;"><div style="padding-top:0px;padding-right:0px;padding-bottom:20px;padding-left:0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td class="f" align="right" valign="top"><p> November 18, 2025 | <a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.c6q0w4g5sodbtO4I1B_pxSdB5RCIH6yy1Fm1CYma3EydMio5sLPLLR6-mCZ4N5d3bpMU0QgLa5h0UtyvwOmxOTDqS6jMHhiL938YKjZsGBVR3Gdhs-C2gT8hNTMFRKycni4VbJlVuNmIMftEfcmqNKbrlWW4xSIHAqHq_A5AQA-1_Vg-8qd5Z5w1rqO5tFqeOwHefNzFn5B0JBhi6qulcpyFVEccCgGBFlkyFzv3-EoXgYU2edMy8UE3cdmKOBmi67pGOFs7qm_z1K7-ABVXbwyiBvllEJpHmZ9KjKgbs8Ea88sW2ZTSI4hklJzI2E7d3Iq3sIAhYMAzcuIK770YNgVQRK6FSB03VVtomrCHpAyU9IUf2_RSttGY7Xp-ca2c-zArjWXF65ViMcSuE4bZ8-AlX5mqlT69RfS218EdoW04FyleaBmsUTfSuyjND6Rppn66o3SJaXRyxOUN8MuhvSTQ02XjL9VeYmVnHnu-yUD89UB_l51O1Fxw-wqDoDQBHvYNiXrxgDVvtvos-p3OwvFdWQk7N-B3cFrAhfpCMLRMkFaZcb_IpaQjzuE1AUyn31i2zbtteyvCAHI8WUp26Ta3RI7Og39TXtqViVEK6a_k4EqZtyQFaBzVSn8SB_Y_RDbLPfjWKRdcD0OkNhaprPsVdjCAa6BZA1S06AkyID2sOWubjW7bCW7kurdou4jhgQEdzWrjnn4JAdO1MT8pwIsFToyAMRsmeSoMeZIMznxzMGn05A8sRRBsFN2CkNKycO_CCD-O_qZlPwf8_z_e_DaqPvYT0RzfkrWliAOVZUmhKDSAsp70gYzkoGhO0-DgM2P78awGm3w5x0yMn7Gx59lmQ-GNPtR6Tv1WGODR_lT056lXKLLk3aZe5SzSPRX45vdpZvthQGRWuAUE0nPGJy-HWZRyULUiVYp1dWNYvpc/4lp/slTwPdj3TYCOX98s-h6mKA/h0/h001.eMKnNmiZJDc7dcH-AmWcgsdIu_9sxPgmNIL7H51VlIw"><span class="translation_missing" title="translation missing: en.templates.posts.email.header.read_online">Read Online</span></a></p></td></tr><tr><td class="dd" align="center" valign="top" style="padding:15px 0;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top"><h1 style="text-align:left;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-weight:Bold;font-size:32px;color:#2A2A2A;padding:2px 0;line-height:38px;"> Depth Anything 3: Recovering the Visual Space from Any Views </h1><p style="text-align:left;font-family:'Helvetica',Arial,sans-serif;font-weight:normal;font-size:20px;color:#3E3E3E;padding:5px 0;line-height:24px;"> LeJEPA, The Path Not Taken, and more </p></td></tr></table></td></tr><tr><td style="line-height:0;"><div data-open-tracking="true"> <img src="https://elink4f7.mail.bycloud.ai/ss/o/u001.3wmUuY8gEWd4_869a_eXcg/4lp/slTwPdj3TYCOX98s-h6mKA/ho.gif" alt="" width="1" height="1" border="0" style="height:1px !important;width:1px !important;border-width:0 !important;margin-top:0 !important;margin-bottom:0 !important;margin-right:0 !important;margin-left:0 !important;padding-top:0 !important;padding-bottom:0 !important;padding-right:0 !important;padding-left:0 !important;"/> </div></td></tr></table></div></td></tr><tr id="content-blocks"><td class="email-card-body" align="center" valign="top" style="padding-bottom:15px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td id="nov-18-th-nov-24-th-33-latest-ai-re" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:normal;padding:0px 28px;text-align:left;"><h6 style="color:#2A2A2A;font-weight:normal;mso-line-height-alt:87.5%;"><i>Nov 10th ~ Nov 19th</i><br><i>#82 Latest AI Research Explained Simply</i></h6></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="industry-news-in-1-line" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;">🗞️ Industry News in 1 Line</h2></td></tr><tr><td style="padding-bottom:12px;padding-left:50px;padding-right:40px;padding-top:12px;" class="ee"><div style="margin-left:0px;" class="edm_outlooklist"><ol start="1" style="list-style-type:decimal;margin:0px 0px;padding:0px 0px 0px 0px;"><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;">♥ 7.5k</span></span> OpenAI has begun deploying a new <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DIqyAo9xTeoWriogq2VlWeUmi9WmFR4pnC4wMSHAHOExu1aVUMbwV8qg9FGmsgfGWMsGRzeicMlseC2CEO7ti3WPaVYHdx0xrgyTQsDUfvgGhE0u8qMSR-Xn4wI3Qxp-L_Fa8bb7SiKuDOpP_47KHNV2zUcyh1toNyj4cJB3MWmykioFrzKRDU6DKaSG3eoBVxfa7X428TvBOyjEvyr9AZrxy7d574IgmYJBIbqgPAIq5o7kr8ujO0WmF8Ut6PNay_B93pRQobro-folvXbeY-1IlL56q0qeODyV2F6kp4EQpXQnu9txFe_d7TCBN2qn/4lp/slTwPdj3TYCOX98s-h6mKA/h1/h001.NBbAVpBLHwlUE0B3a1Or92ga8O9SoSYozzM7F3aUInY" target="_blank" rel="noopener noreferrer nofollow"><span>group chat feature</span></a> in select regions across the globe. This allows multiple users to collaborate with each other and ChatGPT in a single, shared conversation. The feature is being rolled out on both mobile and web for logged-in users across all ChatGPT plans, <b>including free</b> and paid tiers. </p><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/7bfa2a37-9561-4ab4-9234-f335cdcd9b6c/Group_Chat__Blog__1920x1080__2_.png?t=1763479868" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr></table></li><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;">♥ 1.5k</span></span> <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.S3-S-66rObX2TUuSZjz2buzEEORugwueaTsTfKduNuk4LdMD1yEKI8KRRqqfbZ2QYfyYeEV4KsrcMGbKyIiln7KY3yF8L-tUMuW0zniHRR8Wce0jpekTeY97YAZnMfhZyv5JSRJjbed3m3cun2wryIU7Tkjf21i-qjiG_6cSXNPus6N-BC6GGUtVmXacaz1IiKETTAd44QZiUlKfypC-mOfxyQIZenuUAK-Y16UBYNLRznQ22h2js-L8EsK9a358BRKYoGztwczClufraJCx9g/4lp/slTwPdj3TYCOX98s-h6mKA/h2/h001.14uRWFsOyEP8T5AFioVes0Gtn_nWlTMhPj63eZSDudY" target="_blank" rel="noopener noreferrer nofollow"><span>Baidu has released ERNIE 5.0</span></a>, its latest natively omni-modal foundational model, which excels in omni-modal understanding, creative writing, and instruction following. The ERNIE 5.0 Preview 1022 variant features stronger text capabilities, while the standard ERNIE 5.0 Preview is the latest overall version. </p><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/250a5ad9-9c9b-46d6-9ea1-1d467231748f/image.png?t=1763480208" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr></table></li><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;">♥ 11k</span></span> <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DIqyAo9xTeoWriogq2VlWeUmi9WmFR4pnC4wMSHAHOF8NI3VVnhrpCRRi1MyLa-GWFU5Ly9iSgoIpi5X-ObF11V89Tp2F1egRLKBvk0aaUgdEJKRPs9430W4kgTFXy_tswDOLLRIQwM7IvnXGRZH3iQJ5Voni0It7hDzEDFYxYY4u7k94lSBVT8m21VVoxYAP4nITZ_bW9GjVImL0ZVVlpppJ7QyZ1NlniIgKZtaeNSmzY3b9_QQ3VX_fp0QzMh_WADZN5sUzFiz_pZTwevFW-pp7IGcO7L7qSGZMxZMX08/4lp/slTwPdj3TYCOX98s-h6mKA/h3/h001.hPod6YXsVtKzjpo1bN_ktw80nkGs6EO5ORj-LVofQW8" target="_blank" rel="noopener noreferrer nofollow"><span>OpenAI has announced GPT-5.1</span></a>, an upgraded model series that aims to be more intelligent and conversational. They have also released <b>GPT-5.1 Instant</b>, which is designed to be warmer and better at following instructions, and GPT-5.1 Thinking, an advanced reasoning model that is now faster on simple tasks. The new models, which also feature improved math and coding abilities, are rolling out to paid users first, with API access coming later in the week. </p><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/8aa69dcd-2415-4ade-9a47-1473fc80e073/GPT-5.1_spends_less_time_on_easy_tasks__and_more_time_on_hard_tasks.png?t=1763480388" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr></table></li><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;">♥ 1.4k</span></span> <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.9ggl6Mt0xphuuMReR5gVpQgITgllIfsT4X2wx9T3v1-pY1OPqBCbCsvulc6mUDIGJjvMMctrG1R5xJ26Smm8J-eoekaIlMwZE2Mh67fGGU1sTuiLLKWPtjNX8NNZC7T2PWD-yGH1j3X7QCE0bU8uesnRjuLiP-4Ttmed4c7wCdtIRQvf1uEXR3Q_4fU8ciUeEGj9Q1yS3EiNNWbgIku5lR2wIpY17qV7NqPDQqZrHG15hFfMRxh4GAwS4JRZuHDuuUIa4aD6p5SLZlVWkezbtjN08QgDEKsGIGL_xwlAKvSIEleHYpy47-_O7jq6gwN9Nyrc5J4pfQUil2mj_JwrYRyYuJAu7J-FRlePcQ46epwsNJFHql6XgveunzpihJrw/4lp/slTwPdj3TYCOX98s-h6mKA/h4/h001.3Q7Q6GzY3U-Y7vIGU05xsxDiBrW_UM4PKPIp938cevk" target="_blank" rel="noopener noreferrer nofollow"><span>Google DeepMind has introduced SIMA 2</span></a>, which is an AI agent powered by Gemini that can interact with and follow instructions in 3D virtual worlds. Unlike its predecessor, which followed simple commands, SIMA 2 can reason about high-level goals, converse with users, and describe the steps it's taking to complete a task. This new version shows improved generalization, performing well in games it has never been trained on, and features a self-improvement capability, allowing it to learn from its own experiences without additional human data. <br></p><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/7d4e0319-a121-4fa9-ba0d-937b56c829d9/image.png?t=1763480613" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr></table></li></ol></div></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="transparent" style="background-color:transparent;border-color:#2C81E5;border-style:solid;border-width:5px;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;"><span style="">Support My Newsletter</span></h2></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="color:rgb(34, 34, 34);font-family:Georgia, "Times New Roman", serif;font-size:16px;">As I aim to keep this newsletter free forever, your support is greatly appreciated. If you enjoy reading The AI Timeline, consider sharing it with another research enthusiast. It helps us keep this up for free!</span></p></td></tr><tr><td align="center" valign="top"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top" style="font-size:0px;line-height:0px;padding:30px 0px 30px;" class="dd"><table class="j" role="none" width="50%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td> </td></tr></table></td></tr><tr><td class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;">Share The AI Timeline</h2></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> You currently have <strong>0</strong> referrals. </p></td></tr><tr><td align="left" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; display:none;width:0px;max-height:0px;overflow:hidden;mso-hide:all;height:0;font-size:0;max-height:0;line-height:0;margin:0 auto;" class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 0;"><tr><td align="center" valign="top" style="width:313px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.c6q0w4g5sodbtO4I1B_pxWc4htTObwdorovK0nFHVH-4pUdVE0ELYH5DsNemk732SjNwhPNJ25r0O8B5vYifsGNUqyW5TiZkyMsF1yreu0byy2KW36J1wDdpoLuXg2TU1F1OW8OHoHaU4-ZmrZpPU4RN-crQCEimD190CSn9fPuxpIRojBJyu1VfV5KtQD3QMVdSg2JrjEj5-xm4r4E12Whf08itqPCb9Q5W0X4rt3ubYkqCmWnLeZpmb3_RZcbIk0UE5wZnFLCQJHLFs0qZ0OGpXp89o1HU4mWIBur5Or4tQGm5M_Y8m5PvTEfYfxLRyrcRv7GyVs5oLtFfiySZ2SqtZypLA-h50h61p0uPiA7iA_PiMqlVLtM-87XL33VZi05_O3UTpWE_0nAzFRJ4TW1ayz3_vn4Zlp9IERdbnnD61McS5GXBelKUeBLoqNKgcYTm8jBGhEIGBJ873Uvp3cAjt7ndntRNWYvyp1zxe5ZVWAJt29vbHNKKSg_QY5Loxh7QuzoY_gqtm8tQR3Ar6alJ6nseyyA0-DYxLkblHhVnBhZ66bSor_0UVY5x4tm0xDhpjBMuliDCR3DFch2qatQwE76q-QOLN-aN_uKkiSSBQ-300aOhfCyiBNab5h6bRTZJyiVQE50fCAdXmzRlecBKh5Xboggoo4YOLI0wF-g/4lp/slTwPdj3TYCOX98s-h6mKA/h5/h001.Z-cUecSn9hi2LrYMMEk7tV2DFI8vH6pWsA39BsSXEYI" rel="noopener noreferrer nofollow" style="text-decoration:none;" target="_blank"><img src="" alt="" height="auto" width="313" style="display:block;width:100%;" border="0"/></a></td></tr></table></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:left;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="left" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.c6q0w4g5sodbtO4I1B_pxWc4htTObwdorovK0nFHVH-4pUdVE0ELYH5DsNemk732SjNwhPNJ25r0O8B5vYifsGNUqyW5TiZkyMsF1yreu0byy2KW36J1wDdpoLuXg2TU1F1OW8OHoHaU4-ZmrZpPU4RN-crQCEimD190CSn9fPuxpIRojBJyu1VfV5KtQD3QMVdSg2JrjEj5-xm4r4E12Whf08itqPCb9Q5W0X4rt3ubYkqCmWnLeZpmb3_RZcbIk0UE5wZnFLCQJHLFs0qZ0OGpXp89o1HU4mWIBur5Or4tQGm5M_Y8m5PvTEfYfxLRyrcRv7GyVs5oLtFfiySZ2SqtZypLA-h50h61p0uPiA7iA_PiMqlVLtM-87XL33VZi05_O3UTpWE_0nAzFRJ4TW1ayz3_vn4Zlp9IERdbnnD61McS5GXBelKUeBLoqNKgcYTm8jBGhEIGBJ873Uvp3cAjt7ndntRNWYvyp1zxe5ZVWAJt29vbHNKKSg_QY5Loxh7QuzoY_gqtm8tQR3Ar6alJ6nseyyA0-DYxLkblHhVnBhZ66bSor_0UVY5x4tm0xDhpjBMuliDCR3DFch2qatQwE76q-QOLN-aN_uKkiSSBQ-300aOhfCyiBNab5h6bRTZJyiVQE50fCAdXmzRlecBKh5Xboggoo4YOLI0wF-g/4lp/slTwPdj3TYCOX98s-h6mKA/h6/h001.3T-wDveU5S7blLqhvtC-mzNVZzw4t6r9XGzCSEPUZXE" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Click to Share </a></td></tr></table></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Or copy and paste this link to others: <a class="link" href="https://mail.bycloud.ai/subscribe?ref=6SqUHb8KiF&_bhlid=bf7a73b936aab597b0df9777ef50b28c5a049d32" target="_blank" rel="noopener noreferrer nofollow" clicktracking="off"><span>https://mail.bycloud.ai/subscribe?ref=6SqUHb8KiF</span></a></p></td></tr><tr><td align="center" valign="top" style="font-size:0px;line-height:0px;padding:30px 0px 30px;" class="dd"><table class="j" role="none" width="50%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td> </td></tr></table></td></tr></table></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.zNfxTwpJFmrsCuJJphGRkKSrCVph9-fOYkcjx4VfJRyUw-Iv7GHKoTyxc57iFdcabeJrUAXVgdJXAkTcc7bS82ZF6NEkQHkUBgqGaM66RDbyMBpTK8pOBl6aVCc1cb8u1xYqia1Wu9LXoVNPKmKY8V-ltYpeEQay3nRvn8B9TCF3HSeOtAeHwURZHF7nuJCuJrETFCls8KVAqnix5T5x1BtJfZWjzIx3ykah2IdyYcL8vbmVq_VmUli5PhGGpXzoSx_lVDExAowx5YHybvuLLA/4lp/slTwPdj3TYCOX98s-h6mKA/h7/h001.4JSOoCGDwpIMqCP80MwWNiQm7bFH_cERwEnPOntFlQM" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Check Out My Patreon </a></td></tr></table></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style=""><a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.tLfGW26lAwaS9gFg17HSoGymQ3NNPtd5dE5MV_8UgjLbPKYFbBPtV6oAT4VYSncNiXOMe0ETHKViEemkGKRuti97gDsqlNJXOC9cMEoZt4vqGEMzd3CYIoAvubE-GTMMLWy5txjconqL6R-rpTCP_U4DhKWKJMrJYMZaeOoNycYYgd4ntYd9e1jdxRvWus9ZGuOlKZRZKBDLPD2R7GmgE2O-AfCHKG9ZpBky2qByUfS5ZZ8Trf1NY9n4MEkV2OeDbUnzf0PtHOh7_cdiT6vx4k6X1ngtco_9Ymc-hCNX5QY/4lp/slTwPdj3TYCOX98s-h6mKA/h8/h001.uitFCGKwfvmsJnYhAK5wE3xm2X85cZyum8m_vOGbrho" target="_blank" rel="noopener noreferrer nofollow"><span>Advertise with The AI Timeline! </span></a></span></p></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="le-jepa-provable-and-scalable-self-" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h1 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:175.0%;"><b>LeJEPA: Provable and Scalable Self-Supervised Learning Without the Heuristics</b></h1></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Balestriero<i> and </i>LeCun<i> [</i>Brown University, New York University, Meta-FAIR<i>]</i></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 2k </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> Supervised Learning </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Building useful representations of the world is an important goal for AI models; however, current self-supervised methods rely on a collection of tricks to function properly. This paper proves that embeddings should follow an isotropic Gaussian distribution to be most useful for any future task. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/5518b978-1260-4933-a449-41b4cb3dcfe4/CleanShot_2025-11-18_at_20.41.00_2x.png?t=1763478674" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>N= 100 samples are drawn from a 1024-dimensional standard Gaussian, and the first 2 coordinates are altered to produce the “X” distribution</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> To push the model's embeddings toward this ideal shape, the researchers introduce a new technique called SIGReg. Instead of comparing complex high-dimensional distributions directly, which is computationally expensive, SIGReg works by projecting embeddings onto many random directions. </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> It then checks if these simplified, one-dimensional projections match a Gaussian pattern. This elegant approach avoids collapse (a common failure where all inputs map to the same point) without needing common heuristics like stop-gradient or teacher-student networks. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/61217682-cda1-45dd-82f5-bb05ba013d7e/CleanShot_2025-11-18_at_20.42.28_2x.png?t=1763478763" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> In extensive tests across over 60 architectures and 10 datasets, their resulting framework, LeJEPA, demonstrated strong and stable performance. For example, a Vision Transformer trained with LeJEPA achieved 79% accuracy on ImageNet using a linear probe, which is competitive with more complex methods. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/2af5d8ae-44c1-4e2e-af0e-6a324e73805d/CleanShot_2025-11-18_at_20.43.14_2x.png?t=1763478810" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>LeJEPA learns rich semantic representations through self-supervised learning.</p></td></tr></table></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.fUNb4GdFo9D3F8WuLArtoZr-f6keVrG1GKuVv1wQKvrqUgTMMzRCKHvkiuUp1HKsne5fOs1WY24VZw8EVuGP8RXQgk-5X6QAhsj0o8QQ8JoERiDm2ijJLh2PWtfQ5L3pmXwQxgase23mOmuS4li7pi5hlFRcS_rKHnstpt84Uz0RP-kGUrBWOAIqK5xd827CY8q03bIXErYL0IcYJyNnH5O5VJgxduhaQKQ4dLsSAdvva5jh7aIPoavChlUNLJR574hV-eBQCtMyZ2ezJTcHTojk3jyBdttDeMSk_VXerDU/4lp/slTwPdj3TYCOX98s-h6mKA/h9/h001.k4RXWVtXMh6XO9bgerj3OjqcBu12QXnZxuKe4yQy_9g" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="depth-anything-3-recovering-the-vis" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h1 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:175.0%;"><b>Depth Anything 3: Recovering the Visual Space from Any Views</b></h1></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Lin<i> et al. [</i>ByteDance Seed<i>]</i></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 1.9k </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> Image </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> bycloud’s pick </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Depth Anything 3 simplifies how AI models understand spatial geometry from multiple images. Traditionally, tasks like depth estimation and camera pose prediction required separate, complex models for each scenario. DA3 addresses this with a minimal design, utilizing a single plain transformer to handle multiple views and predict consistent depth and ray maps without requiring specialized architectures. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/828c6b24-4d0a-4669-bf70-5838bbd094ca/CleanShot_2025-11-18_at_20.45.20_2x.png?t=1763478933" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Pipeline of Depth Anything 3</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> The model works by building on a standard pretrained vision transformer, which processes visual inputs efficiently. It introduces an input-adaptive cross-view self-attention mechanism that dynamically shares information across all images, enabling the model to produce aligned depth and ray predictions for each view. Training relies on a teacher-student approach, where synthetic data generates high-quality pseudo-labels to refine real-world depth maps, ensuring detailed and accurate geometry without complex multi-task setups. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/b4397e5a-e31b-4388-96ac-896154711a68/CleanShot_2025-11-18_at_20.45.55_2x.png?t=1763478967" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Comparisons with SOTA methods on pose accuracy.</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> DA3 achieved state-of-the-art results on a new visual geometry benchmark, <b>improving camera pose accuracy by 35.7%</b> and geometric accuracy by 23.6% over prior methods, while also outperforming Depth Anything 2 in monocular depth tasks. This unified approach could make 3D perception more accessible for robotics and mixed reality, though its reliance on public datasets may limit some applications. </p></td></tr><tr class="embed-gen-text"><td align="center" valign="top" style="padding:12px 27px 12px 27px;" class="dd"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top" class="o" style="padding:12px 12px 12px 12px;;background-color:#FFFFFF;border-color:#F1F1F1;border-radius:5px 5px 5px 5px;border-width:1px 1px 1px 1px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="left" valign="top" class="l"><p><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.9ggl6Mt0xphuuMReR5gVpbusMThwvYOeZJ_t00VVH2FJGTkF6B4b-MCA1guy8LSDCpYLnqkhm6UDM_AfvzdMcnjP4usLjBrxA6_ws72eZXHQpbI9yMXc5ObLG0-zXdmsndAsS9u-nGHJaq9yRvIZfsiwm1byfEER-1fmjVLTQwl3zE8MDXAGrbuFarMg2fd-xkq3KIlF4QzwHJ8SDsbBAhzUD6HRIzQx0bj2v8Mug6XjRKxaxvd4M15R9TUrSLxnrYEIR2Rgp5bKY1Azp2zVANUxa4B81rwQinU4d08SAFU/4lp/slTwPdj3TYCOX98s-h6mKA/h10/h001.BLahJV-nDey2VpT-HmbrasdTnbRLO0juSZKI-pJZxbA" style="text-decoration:none;font-style:normal;color:#2D2D2D !important;font-size:14px;line-height:20px;" target="_blank"> Depth Anything 3: Recovering the Visual Space from Any Views <tr><td align="left" valign="bottom" class="n" style="vertical-align:bottom;padding-top:12px;"><p style="word-break:break-word;">depth-anything-3.github.io</p></td></tr></a></p></td></tr></table></td></tr></table></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.fUNb4GdFo9D3F8WuLArtoZr-f6keVrG1GKuVv1wQKvrpr70ajbbpczdtDEWFIrqOHTYGqzbB1mPsrHdVLNCTLhjtbyJCary_ajy_pG03KQpkP8Unt4zP_sWFkcf09RDVwl8PXqnnyNDTvRw_h1FAahV247I6xa102ghgyMHQ6XScekt56R615jGK4ig17OsnqA0d2RI9_M0iPuDl00im5_21yzQi3btzZoxEj0kjNWuMt2oCs7XO_VRwGE4cLCApkENrcmZeALKVpAD3o2zBr95XJRd36e3SVaSGG-qgOj4/4lp/slTwPdj3TYCOX98s-h6mKA/h11/h001.STYswphZ29UsyjF3NZP_pAnrFopuVsmhi5NRoku-OGM" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="why-less-is-more-sometimes-a-theory" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h1 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:175.0%;"><b>Why Less is More (Sometimes): A Theory of Data Curation</b></h1></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Dohmatob<i> et al. [</i>Concordia University, FAIR at Meta, Mila–Quebec AI Institute<i>]</i></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 680 </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> LLM Training Data </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Almost everyone agrees that bigger datasets always make smarter models; however, this paper argues that sometimes, less data really can lead to better performance. Recent methods like LIMO and s1 have shown that aggressively curating small, high-quality datasets can outperform training on massive collections. The key question is: when does this strategy work, and when is more data still better? </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/fb939c58-b8af-44f1-9c19-8b00743e9b98/CleanShot_2025-11-18_at_20.49.49_2x.png?t=1763479206" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Theory Prediction across four key regimes.</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> This paper explains how an imperfect oracle selects examples based on their difficulty and correctness. In label-agnostic curation, examples are kept or discarded based solely on their features, such as retaining either the hardest or easiest problems. The framework demonstrates that for a strong generator, where training labels are already highly accurate, and it focuses on hard examples, effectively refines the model. However, if the generator is weak, using simpler examples helps the model grasp the basics, aligning with traditional scaling laws. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/f61c4b30-905f-43ab-bf21-8b77412485d3/CleanShot_2025-11-18_at_20.50.49_2x.png?t=1763479262" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Strategic pruning prevents model collapse.</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> When labels are also considered, as in label-aware curation, the oracle filters for both difficulty and correctness; this mirrors real-world methods where only valid and challenging examples are kept. The theory adapts to this setting, showing how the fraction of data retained and the alignment between the oracle, generator, and true labels shape the final performance. In both cases, the framework identifies specific conditions where curated, small sets outperform the full dataset. </p></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.fUNb4GdFo9D3F8WuLArtoZr-f6keVrG1GKuVv1wQKvrwWcJkvu260a5IOnPLBTGZDGLK2DX291DU3Cfzfvdr0zNS1pf9WCr_EY_8jR51ebp_KCFrG8A_EBkUFsa8I33bzPWSDEEkrHzsMU4TUxMWCn_vmBpLfzcFTAPUqy1kDF_kIXkeM0rkRUykD9ENVGBcwDWmmx_GF1oEF2w11UAKh0M9XLwHhiEJY58j7bWS1m244e6v5w6urHmMDsE-EquQYUILkmH9Wc-kEoZddFk1i_dzB3iDN3PRRRqazvlRh74/4lp/slTwPdj3TYCOX98s-h6mKA/h12/h001.4qRdgxGlcJ-ceSWrT40B5P_zDzlkof8A2e8z34h1Y8A" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="the-path-not-taken-rlvr-provably-le" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h1 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:175.0%;"><b>The Path Not Taken: RLVR Provably Learns Off the Principals</b></h1></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><i>Zhu et al. [</i>Meta AI, The University of Texas at Austin<i>]</i></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 487 </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> RLVR </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> It turns out that reinforcement learning can significantly enhance reasoning skills in large language models while only slightly adjusting a small fraction of their parameters. Researchers wanted to understand why such sparse updates lead to such strong improvements. They found that what appears to be sparsity is actually a sign of a deeper, model-guided optimization pattern: for a given pretrained model, updates consistently land in the same parameter regions, regardless of the dataset or training method used. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/5522d5d0-4d30-402c-8201-90280cfe2359/CleanShot_2025-11-18_at_20.53.09_2x.png?t=1763479405" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Update sparsity in SFT vs. RLVR.</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> This behavior is explained by the Three-Gate Theory. </p></td></tr><tr><td style="padding-bottom:12px;padding-left:50px;padding-right:40px;padding-top:12px;" class="ee"><div style="margin-left:0px;" class="edm_outlooklist"><ol start="1" style="list-style-type:decimal;margin:0px 0px;padding:0px 0px 0px 0px;"><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"> First, a KL constraint ensures that each update step remains small, preventing the model from straying too far from its original behavior. </p></li><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"> Second, the model’s own geometry steers these small updates toward directions that don’t disrupt its core structure, preserving important weight patterns. </p></li><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"> Third, the limited numerical precision in training makes many of these tiny adjustments invisible, causing the overall update pattern to appear sparse, even though learning is occurring across many parameters. </p></li></ol></div></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/ec8e30e8-f82e-489f-9a3b-43a564d8f2cb/CleanShot_2025-11-18_at_20.54.37_2x.png?t=1763479489" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Model List for analyzed checkpoints for agentic tasks and RLHF algorithms.</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Experiments confirmed that RL updates avoid changing the model’s most influential “principal” weights, which are often targeted by supervised fine-tuning. As a result, RL preserves the model’s original spectral structure and shows minimal rotation in its main learning directions. </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> On the other hand, supervised fine-tuning tends to alter principal weights more significantly, which results in greater changes in model behavior. These findings suggest that RL operates in a fundamentally different optimization regime, meaning that methods designed for supervised tuning may be poorly suited for reinforcement learning. </p></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.fUNb4GdFo9D3F8WuLArtoZr-f6keVrG1GKuVv1wQKvoaPyGSXkXnvm8pTDHamaNNvjizFsJRbsRjXtWLhy_gEqVQbzAK6fXnIST11gbuh4nyvrdTPzLj0XBv-gjvC4cJjKuAzK-cPBtj9EQ3lCRTRgdhgNWu4tHTndtbKfMSKyQtO7X3pEAjlSzasqS7BUve6zfBeBZU1RDsgFKO-oQOnfm0_ZdbQrSkpXBe50KWAjSVUuFjc1-rP_1GhkOf_5o2D89NW6d3TafFLAFT9e852tPj8PUrWF9ZSLatGjHGgHQ/4lp/slTwPdj3TYCOX98s-h6mKA/h13/h001.n9_Idyujg_-pYRkX-izMcgo7hdpu4yh0hSvGeB5uizs" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td class="dd" align="center" valign="top" style="padding:20px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.amatuKKICSickUKplYJXmO_kv1x1CEAn9BORUbTX0hDE3IMTP4l75r8AjdP4DP-z0wGGg6S5k8E6ZNW3ns3agaLuec2AXsAwPZH-9VsuCa-DX3qJChkk9lzQic6EeodEojrNW463sEC9jdf87CDZa3bbffqo7_hHBuSiEaeVMhW9xnCBVa3l7gEjoNtTAddBBrrahH9VVGrYcK1szz-XSC1E8fMXUcZeUF7INCZwPaOuIkJ1aUU5BU1yJWAp4IB4IzYQIA9WlxBd10f65OFHbWyGx51xcPEyIo-zjS0uES0Uyb0Bajy0OFUSocFWMsqo/4lp/slTwPdj3TYCOX98s-h6mKA/h14/h001.tvWJTFqA-6kL94LGDscJzUv9DsCjWmzw56u4QBAh01E" style="text-decoration:none;"><table align="center" width="100%" cellpadding="0" cellspacing="0" border="0" role="none" style="max-width:520px;margin:0 auto;"><tr><td class="p" width="100%" style="padding:2px;border:none;"><table width="100%" cellpadding="0" cellspacing="0" border="0" role="none"><tr><td align="center" valign="top" style="width:100%;"><div style="max-height:0;position:relative;opacity:0.999;width:100%;mso-hide:all;"><div style="display:inline-block;width:100%;padding-top:25%;"><img width="20%" height="auto" loading="lazy" alt="" style="border:0;" src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/static_assets/youtube_play_icon.png"/></div></div><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.amatuKKICSickUKplYJXmO_kv1x1CEAn9BORUbTX0hDE3IMTP4l75r8AjdP4DP-z0wGGg6S5k8E6ZNW3ns3agaLuec2AXsAwPZH-9VsuCa-DX3qJChkk9lzQic6EeodEojrNW463sEC9jdf87CDZa3bbffqo7_hHBuSiEaeVMhW9xnCBVa3l7gEjoNtTAddBBrrahH9VVGrYcK1szz-XSC1E8fMXUcZeUF7INCZwPaOTGNXlmnlh0RlRtAcqobsvLI8CkFi7bPysPpQUF6DMVIrygkujzyXy-WMgDn3Z8QOJuLAtLe8XjtAxPNiNNGdy/4lp/slTwPdj3TYCOX98s-h6mKA/h15/h001.WaB9mJ8lYD7rqk0flskbPfy5UkM5YGXsCSHWk-BxL6U" style="text-decoration:none;"><img src="https://i.ytimg.com/vi/BbI8n9XZJo4/maxresdefault.jpg" width="480" height="auto" loading="lazy" alt="YouTube video by bycloud" style="display:block;height:auto;border:0;outline:none;text-decoration:none;background-color:#000000;width:100%;"/></a></td></tr><tr><td><p style="font-size:12px;font-weight:500;font-style:italic;font-family:Helvetica, Calibri, sans-serif;color: #686a6d; padding-top:0 !important;padding-bottom:6px !important; padding-left:4px !important;"> The biggest Mystery of LLMs have just been solved </p></td></tr></table></td></tr></table></a></td></tr></table></td></tr></table></td></tr><tr><td align="center" valign="top"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td><tr><td class="b" align="center" valign="top" bgcolor="#2a2a2a" style="padding:0px 0px 0px 0px;border-style:solid;border-width: 0px 0px 0px 0px;border-color: #2a2a2a;border-bottom-left-radius:10px;border-bottom-right-radius:10px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top" bgcolor="#73ddff" style="padding:12px"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td><span style="padding-left:1px;"></span></td><td align="center" valign="middle" width="75" style="width:75px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.1muhFWIqieRYpaJ-FbWSCQqcWoV4NNHHr5SkP9THApWUO4S9eWSDBFDMKQ83N4CY1l4kXQTU9YnEEqXRrg_2uhS94rQOKDl60C6UO57Zu1mJCFi_zhfD-a_hnJHdTQ7EZzaH-hBxxCLIDo5bhR0Vci8jyeQnchzugHX77am8myo5eqaNpjNR-4Rp-MwwxSpQ_-PC4VumojKpaLXu_w8AxueSU3wvxxCsdK1oUsus3skZdzWVh7atOwEQBod9TZokERjBAoStCcL-DSHmKNTNEA/4lp/slTwPdj3TYCOX98s-h6mKA/h16/h001.enGkVfPO3Ns1n0UGHhNUR_Wnve3lnjNthTtbvEHKe0I" style="text-decoration:none;"><img width="22" height="22" alt="tw" border="0" style="display:block;max-width:22px;color:Dark" src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/static_assets/x_dark.png"/></a></td><td align="center" valign="middle" width="75" style="width:75px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.amatuKKICSickUKplYJXmBoQnQ9VXnB2zTxBG4HeHBi5iti4l06m5fR1UTFq_vFgQaGMmutCjJbuBFU8WHbRj6heToGsiZHlry3dxu5DEimeQbpBAMyhKdSbaWrmIf3bDAuwH80Ncwg6f--q0u-uDutpQoYL0sjbJnbnUYQqy9SISpgXVEvyAvUs_HEmuEn6A-QXRs8qR4PiTDKkyJVDOtzLXljrYmnCbt_7XgCzszaXpOMVMIhLYAXxxrgNs8kkTD0ze9H1MnskDYezo36yXA/4lp/slTwPdj3TYCOX98s-h6mKA/h17/h001.8-1oOYu4pW9khyCnM_AN0gbt2xcbJhc0D3rI4dSq6Wc" style="text-decoration:none;"><img width="22" height="16" alt="yt" border="0" style="display:block;max-width:22px;color:Dark" src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/static_assets/youtube_dark.png"/></a></td><td><span style="padding-left:1px;"></span></td></tr></table></td></tr><tr><td height="10" style="line-height:1px;font-size:1px;height:10px;"> </td></tr><tr><td class="w" align="center" valign="top" style="padding:15px 15px 15px 15px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top"><p style="font-family:'Verdana',Geneva,sans-serif;color:#FFFFFF!important;"> Update your email preferences or unsubscribe <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.c6q0w4g5sodbtO4I1B_pxWc4htTObwdorovK0nFHVH-4pUdVE0ELYH5DsNemk732SjNwhPNJ25r0O8B5vYifsBhEpz-DJgyVFmavJPa0OyKRRnvw4o7XGyvIv7PRofnmU8ExGkemA-x10Z0JydTFnCS2xvy1oPvsg6QiVRlxqHVl-iqaOJ4roTlWfdEGekojdb5-uUQxucKnVcJmvni4BzK9FMLCIfmse_GYNDsnZ2zmXC22mztujDJ8YQlyNGaSQwOo7MSR3V_5kex7t6BZKvajqlbbfIkQ6JrPTCqzVv8h5AScvRMNIgSwjk-GZL19N_LVCJ7vL7HoUy6oRQb_dlSVwKCTrhrpE_epC3Gq0i4xBSphi0PeKeoduUIdkM0XG6plyFVbxZ5TbsW-QcE4Xc7ssqbkrbSw_B9i6Cf9qiDeSwsovY4rVDZluFUGBbutzqTd4LcWtMD0cWBL_GnDCdauGuyG_VzgYvpvuyEWbP_RbVdQam3AvmPyMhPOkIZGciBfcZRne7ONwAxzMRwa42YhH8gH73_a_EXCg7U7V1j_igLD-c6H6UHKdt53VSEoZgwnnU6Y3W_ab2fdjheb8Er4MukWuXVhCXZI_8taOMM7Y6tB9NNhwMTQoTMndJWvPdahrZeu47wSLomMwaKmzN6eHY9TrnP1J6inZ_DYf_VoWsNaS58ClYJtgD_LaETWOwaC1FngKrEOwxt8VqpMCHFwcoPcOaMDTk6GGWIPZn2mn9Qz92v6mxEPG5dWEzCXFaGPd0-le3KXtmEIXBKhQG9utSDJLumKhemZsd5Zge1bPmQMc3asZwL8U1Mh5FROx0SbgDjfcZ2a7Q3rq7CsZPUVgz4TjIWPrFruvNgSwl9RBbCuKnRVsWITg8fffY0xvigPcKHcD1br-3wMYSIBI3OA3N9qR20EY5QkekzJQfKzzpm1n1U8LkqOgdPkcGNoijinLrzQaLS6lMYE2CFYtBhqrlsl9FEC1_0HVeqa_L-miWmnrjUqq6ZHAEG6fq2rRCYGqqPwtatfVib129Sf9XoCDE54zuOWQgdnWI3E6jI/4lp/slTwPdj3TYCOX98s-h6mKA/h18/h001.a3RHB3Vxv0fienD8PM81x_ulrVO-XJ2c1ABpMo6nhfU" style="text-decoration:underline;text-decoration-color:#FFFFFF!important;color:#FFFFFF!important;"> here</a></p><p class="copyright" style="font-family:'Verdana',Geneva,sans-serif;color:#FFFFFF!important;"> © 2025 bycloudai </p><p style="font-family:'Verdana',Geneva,sans-serif;color:#FFFFFF!important;"> 228 Park Ave S, #29976, New York, New York 10003, United States </p></td></tr><tr style="display: table-row !important;"><td align="center" valign="top" style="padding-top:20px;" style="display:table-cell !important;"><table role="none" border="0" cellspacing="0" cellpadding="0" align="center" style="display:table !important;"><tr style="display:table-row !important;"><td class="u" align="center" valign="middle" height="32" style="height:32px;display:table-cell !important; max-height: 32px !important;margin:0px !important; background-color: #ffffff !important;"><a style="line-height:32px !important;text-decoration:none;display:block !important;" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DUiN96-Eq7pUHzwEhy5j28olDWFpV5DDKfdk_OdOKOjf9H7INR55ClgcC_vDqSQ-JPcHuoqSYcYC3w1jmhjwLm_M2mxU96ZrM4Zp9rZHlssvD6UvvdnokBAcyRkYtKYh-xI2q2SM2FCRODg2jz5cRtlG9JeieOOtNvboM6Zz7jPjYhkSo2HuHfUC21jBuNnGoL815EuLjQhqU9nwqZOMeA7MOcLAQrDSVhIlvfr15rJgSmfeCc4KLsQpnTQbiqXz/4lp/slTwPdj3TYCOX98s-h6mKA/h19/h001.Uu3peFcWgJmhD0hs3B7MTKbYmSxStza2fHU2qLevKao"><img src="https://media.beehiiv.com/output-onlinepngtools.png" width="16" alt="beehiiv logo" style="display:inline-block !important;max-width:16px !important; vertical-align:-3px !important;width: 16px !important;" border="0"/><span style="padding-left:11px !important;display: inline-block !important;">Powered by beehiiv</span></a></td></tr></table></td></tr><tr><td align="left" valign="top" height="2" style="height:2px;"><a href='https://elink4f7.mail.bycloud.ai/ss/c/u001.CxDkkVpJsBdVoe83c_tBWsHIaP4XNp0WgUYqLvHcKk_3uqk_KIkz4ddLinhFbud6JuxLFdSUhYnR7b1NSsmbtzXNGNblnEEMKUtkCAjkn8Y/4lp/slTwPdj3TYCOX98s-h6mKA/h20/h001.4rcj9FIyN5iRkX-EXHA61NyemygQjD62gjMZu51d-UA' style="color: #2a2a2a !important; cursor: default; font-size: 1px; text-decoration: none;"> Terms of Service </a></td></tr></table></td></tr></table></td></tr></td></tr></table></td></tr></table></td></tr></table></td></tr></table></div></body></html>