<!DOCTYPE html><html lang="en" xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" style="font-size:16px;"><head></head><head><meta charset="utf-8"/><!--[if !mso]><!--><meta http-equiv="X-UA-Compatible" content="IE=edge"/><!--<![endif]--><meta name="viewport" content="width=device-width,initial-scale=1"/><meta name="x-apple-disable-message-reformatting"/><meta name="format-detection" content="telephone=no,address=no,email=no,date=no,url=no"/><meta name="color-scheme" content="light"/><meta name="supported-color-schemes" content="light"/><title>How A Vision Transformer Just Broke The ARC-AGI Benchmark</title><!--[if mso]><xml><o:OfficeDocumentSettings><o:AllowPNG/><o:PixelsPerInch>96</o:PixelsPerInch></o:OfficeDocumentSettings></xml><![endif]--><style>
:root { color-scheme: light; supported-color-schemes: light; }
body { margin: 0; padding: 0; min-width: 100%!important; -ms-text-size-adjust: 100% !important; -webkit-transform: scale(1) !important; -webkit-text-size-adjust: 100% !important; -webkit-font-smoothing: antialiased !important; }
.body { word-wrap: normal; word-spacing:normal; }
table.mso { width: 100%; border-collapse: collapse; padding: 0; table-layout: fixed; }
img { border: 0; outline: none; }
table { mso-table-lspace: 0px; mso-table-rspace: 0px; }
td, a, span { mso-line-height-rule: exactly; }
#root [x-apple-data-detectors=true],
a[x-apple-data-detectors=true],
#MessageViewBody a { color: inherit !important; text-decoration: inherit !important; font-size: inherit !important; font-family: inherit !important; font-weight: inherit !important; line-height: inherit !important; }
span.MsoHyperlink { color: inherit !important; mso-style-priority: 99 !important; }
span.MsoHyperlinkFollowed { color: inherit !important; mso-style-priority: 99 !important; }
.a { background-color:#dedede; }
.b { background-color:#2a2a2a; }
.c { background-color:#ffffff; }
.d { background-color:#fff0c8; }
.d2 { background-color:#FFFFFF; }
.d3 { background-color:#FFFFFF; }
h1 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h2 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h3 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h4 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h5 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h6 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h1, h1 a, h2, h2 a, h3, h3 a, h4, h4 a, h5, h5 a, h6, h6 a, ul, li, ol, p, p a { margin: 0;padding: 0; }
h1 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:700;font-size:28px;color:#2A2A2A;line-height:42px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
h2 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:700;font-size:24px;color:#2A2A2A;line-height:36px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
h3 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:20px;color:#2A2A2A;line-height:30px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
h4 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:18px;color:#2A2A2A;line-height:27px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
h5 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:16px;color:#2A2A2A;line-height:24px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
h6 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:14px;color:#2A2A2A;line-height:21px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
p { font-family:'Georgia','Times New Roman',serif;font-weight:400;color:#2D2D2D;font-size:16px;line-height:24px;padding-bottom:8px;padding-top:8px;mso-margin-top-alt:8px;mso-margin-bottom-alt:8px; }
p a, .e a, ul a, li a, .h a, .h2 a, .h3 a { word-break:break-word;color:#2C81E5 !important;text-decoration:none;font-style:italic; }
p a span, .e a span, ul a span, li a span { color: inherit }
p .bold { font-weight:bold;color:#2D2D2D; }
p span[style*="font-size"] { line-height: 1.6; }
.f p { font-size:12px;line-height:15px;color:#2D2D2D;padding:0; }
.f p a { color:#2D2D2D !important; }
.g p { font-family:'Helvetica',Arial,sans-serif;font-size:14px;line-height:20px;font-weight:normal;margin:0; }
.g p a { text-decoration: underline; }
.i p { font-family:'Helvetica',Arial,sans-serif;line-height:23px;font-size:15px;color:#2D2D2D; }
.i p a { color:#2D2D2D !important; }
.i2 p { font-family:'Helvetica',Arial,sans-serif;line-height:23px;font-size:15px;color:#2D2D2D; }
.i2 p a { color:#2D2D2D !important; }
.i3 p { font-family:'Helvetica',Arial,sans-serif;line-height:43px;font-size:24px;color:#2D2D2D; }
.i3 p a { color:#2D2D2D !important; }
.h p a { color:#595959 !important; }
.h2 p a { color:#595959 !important; }
.h3 p a { color:#595959 !important; }
.f p a, .i p a, .i2 p a, .i3 p a, .h p a, .h2 p a, .h3 p a { text-decoration:underline; }
.j { border-top:3px solid #ffeb2d; }
.k p { padding-left:15px;padding-bottom:0px;padding-top:6px;mso-margin-top-alt:6px;mso-margin-bottom-alt:0px;mso-margin-left-alt:15px; }
.o { background-color:#FFFFFF;border:1px solid #F1F1F1;border-radius:5px; }
.o p { font-family:'Helvetica',Arial,sans-serif;padding:0px;margin:0px; }
.l p,
.l p a, .l a { font-size:14px;line-height:20px;font-weight: bold;color:#2D2D2D;padding-bottom:6px;mso-margin-bottom-alt:6px;text-decoration:none; }
.m p,
.m p a { font-size:13px;line-height:18px;font-weight:400;color:#2D2D2D;padding-bottom:6px;mso-margin-bottom-alt:6px;text-decoration:none; }
.n p,
.n p a { font-size:12px;line-height:17px;font-weight:400;color:#2D2D2D;padding-bottom:6px;mso-margin-bottom-alt:6px;text-decoration:none; }
.p { background-color:#FFFFFF;max-width:520px;border:1px solid #E1E8ED;border:1px solid rgba(80, 80, 80, 0.3);border-radius:5px; }
.q { font-size:16px;font-family:Helvetica,Roboto,Calibri,sans-serif !important;border:1px solid #e1e8ed;border:1px solid rgba(80, 80, 80, 0.3);border-radius:10px;background-color:#FFFFFF; }
.q p { font-size:16px;font-family:system-ui,Helvetica,Roboto,Calibri,sans-serif !important;color:#222222;padding:4px 0; }
.r { border:1px solid #E1E8ED !important;border-radius:5px; }
.s p { font-size: 14px; line-height: 17px; font-weight: 400; color: #697882; text-decoration: none; }
.t p { font-family:'Helvetica',Arial,sans-serif;font-size:12px;line-height:18px;font-weight:400;color:#000000;font-style:italic;padding:4px 0px 0px; }
.v { border-radius:10px;border:solid 0px #DFD150;background-color:#2C81E5;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;color:#FFFFFF; }
.v a { text-decoration:none;display:block;color:#FFFFFF; }
.w p { font-size:12px;line-height:15px;font-weight:400;color:#FFFFFF; }
.w p a { text-decoration: underline !important;color:#FFFFFF !important; }
ul { font-family:'Helvetica',Arial,sans-serif;margin:0px 0px 0px 25px !important;padding:0px !important;color:#2D2D2D;line-height:24px;list-style:disc;font-size:16px; }
ul > li { font-family:'Helvetica',Arial,sans-serif;margin:10px 0px 0px 0px !important;padding: 0px 0px 0px 0px !important; color: #2D2D2D; list-style:disc; }
ol { font-family:'Helvetica',Arial,sans-serif;margin: 0px 0px 0px 25px !important;padding:0px !important;color:#2D2D2D;line-height:24px;list-style:decimal;font-size:16px; }
ol > li { font-family:'Helvetica',Arial,sans-serif;margin:10px 0px 0px 0px !important;padding: 0px 0px 0px 0px !important; color: #2D2D2D; }
.e h3,
.e p,
.e span { padding-bottom:0px;padding-top:0px;mso-margin-top-alt:0px;mso-margin-bottom-alt:0px; }
.e span,
.e li { font-family:'Helvetica',Arial,sans-serif;font-size:16px;color:#2D2D2D;line-height:24px; }
.rec { font-family: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji" !important; }
.rec__button:hover { background-color: #f9fafb !important; }
.copyright a {color: inherit !important; text-decoration: none !important; font-size: inherit !important; font-family: inherit !important; font-weight: inherit !important; line-height: inherit !important;}
.txt_social p { padding: 0; word-break: break-all; }
.table, .table-c, .table-h { border: 1px solid #C0C0C0; }
.table-c { padding:5px; background-color:#FFFFFF; }
.table-c p { color: #2D2D2D; font-family:'Helvetica',Arial,sans-serif !important;overflow-wrap: break-word; }
.table-h { padding:5px; background-color:#F1F1F1; }
.table-h p { color: #2A2A2A; font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif !important;overflow-wrap: break-word; }
@media only screen and (max-width:667px) {
.aa, .w100pc { width: 100% !important; }
.bb img { width: 100% !important; height: auto !important; max-width: none !important; }
.cc { padding: 0px 8px !important; }
.ee { padding-top:10px !important;padding-bottom:10px !important; }
.ff ul, .ff ol { margin: 0px 0px 0px 10px !important;padding: 0px !important; }
.ff li { margin:10px 0px 0px 10px !important; }
.r {height:140px !important;}
.s p { font-size:13px !important;line-height:15px !important; }
.mob-hide {display:none !important;}
.mob-show {display: block !important; width: auto !important; overflow: visible !important; float: none !important; max-height: inherit !important; line-height: inherit !important;}
.mob-stack {width:100% !important;display:block !important;}
.mob-w-full {width:100% !important;}
.mob-block {display:block !important;}
.embed-img {padding:0px 0px 12px 0px !important;}
.socialShare {padding-top:15px !important;}
.rec { padding-left:15px!important;padding-right:15px!important; }
.bodyWrapper { padding:7px 4px 7px 4px !important; }
.social-mobile {float:left !important;margin-top:10px !important;}
}
@media screen and (max-width: 480px) {
u + .a .gg { width: 100% !important; width: 100vw !important; }
.tok-heart { padding-top:75% !important; }
.tok-play { padding-top: 250px !important; }
}
@media screen and (max-width: 320px) {
.tok-heart { padding-top:65% !important; }
}
.u { border: 1px solid #CACACA !important; border-radius: 2px !important; background-color: #ffffff !important; padding: 0px 13px 0px 13px !important; font-family:ui-sans-serif,system-ui,-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,"Noto Sans",sans-serif !important;font-size: 12px !important; color: #767676 !important; }
.u a { text-decoration: none; display: block !important; color: #767676 !important; margin: 0px !important; }
.u span, .u img { color: #767676 !important;margin:0px !important; max-height:32px !important;background-color:#ffffff !important; }
</style><!--[if mso]><style type="text/css">
h1, h2, h3, h4, h5, h6 {font-family: Arial, sans-serif !important;}
body, table, td, p, a, span {font-family: Arial, sans-serif !important;}
sup { font-size: 100% !important;vertical-align: .5em !important;mso-text-raise: -1.5% !important;line-height: 0 !important; }
ul { margin-left:0px !important; margin-right:10px !important; margin-top:20px !important; margin-bottom:20px !important; }
ul li { margin-left: 0px !important; mso-special-format: decimal; }
ol { margin-left:0px !important; margin-right:10px !important; margin-top:20px !important; margin-bottom:20px !important; }
ol li { margin-left: 0px !important; mso-special-format: decimal; }
li.listItem { margin-left:15px !important; margin-top:0px !important; }
.paddingDesktop { padding: 10px 0 !important; }
.edm_outlooklist { margin-left: -20px !important; }
.embedImage { display:none !important; }
</style><![endif]--><!-- __merge_tags_in_links__ --><style>
@font-face {
font-family: 'Open Sans';
font-style: normal;
font-weight: 700;
font-display: swap;
src: url('https://fonts.gstatic.com/s/opensans/v40/memSYaGs126MiZpBA-UvWbX2vVnXBbObj2OVZyOOSr4dVJWUgsg-1x4gaVIUwaEQbjA.woff2') format('woff2');
}
@font-face {
font-family: 'Open Sans';
font-style: italic;
font-weight: 700;
font-display: swap;
src: url('https://fonts.googleapis.com/css2?family=Open+Sans:ital,wght@1,700&display=swap') format('woff2');
}
</style></head><body class="a" style="margin:0px auto;padding:0px;word-wrap:normal;word-spacing:normal;background-color:#dedede;"><div role="article" aria-roledescription="email" aria-label="email_name" lang="en" style="font-size:1rem"><div style="display:none;max-height:0px;overflow:hidden;"> Plus more on Seer, Virtual Width Networks, SAM 3, and Evolution Strategies at the Hyperscale  ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ </div><table role="none" width="100%" border="0" cellspacing="0" align="center" cellpadding="0" class="gg"><tr><td align="center" valign="top"><table role="none" width="670" border="0" cellspacing="0" cellpadding="0" class="aa" style="width:670px;table-layout:fixed;"><tr><td class="bodyWrapper" align="center" valign="top" style="padding:7px 7px 7px 7px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top" style="border-width:0px 0px 0px 0px;border-style: solid; border-color: #2a2a2a;border-radius:10px 10px 0px 0px;background-color:#ffffff;" class="c"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr id="header"><td style="padding:15px 15px 0px 15px;"><div style="padding-top:0px;padding-right:0px;padding-bottom:20px;padding-left:0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td class="f" align="right" valign="top"><p> November 27, 2025 | <a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.c6q0w4g5sodbtO4I1B_pxSdB5RCIH6yy1Fm1CYma3ExuvNVjk86gb5qelp7Ulv66P9M11oA_9zfruMFkzTI7gJsH0KARSYSnj92cjM5_tMCU_Pkx6H2fikYJEgDQ4hyzRHxzKd1_8wVUDt19fH-AC3IyQIwK4CLgUDRKgVTgMnZ0XJZpn4mPP0VKTJy2dkNZiNb7xaYDp8IldjMG80NWjDvCBCFp_b4rHvX-jUXY0K_Lg0dqiPXAVQmaH8GADjUjE5EKzEje06OHSZ-05m8TVZJNHZoQFUO5IKTJaIAUPgn0_KAgGyfwvggr428a_C-aBBW-N4hD0XJovGPBaMAmpSpsbZ7GSPjvOCHh6qQ42M6LH4Av4PlDgpw9rU1SYSWh1B_PVPFp6bLXr6oV8a50LNagLeJMrTor0H_FUabQHNd4_Nej0XudLgr1kJkiCWMowWDlrH1jwD28FyM-33Hgi2zsAmsCddW6gDT2DuAM2UUgClsB62O8ENTRHpiQ88AKrpD2gpn0oyuTuRLqIzN7-kn2XD2rXmhc2sjkUutqxrHs5i_QqNoR8buW2Ci0nAEyAmvnxoTId1nlFpgC00DOdIzJPzWz0RZnUCBA8P757aO11eMU-xTKsUd6-FWOHrs2IQfO3KDPYVNE2ylo4j7K2703RGg8DwT_-I6-2h9Pa7NaejNLEJ3cOusuB1uzWU7lRrqvjSXV-u17EE-RGprX20IRaySTpO1n86OoJRCU6crWVPbRBC9ZiNxte1O_Z4wCfxVMnF6eC9gIDY4S_NickQA3VMFUqn0Ud_maWJ7cLyuOzktDYypcNLxid4mVwQVx4n_viBoAToMgbwovdVdiZ4xYLIj9k8yacTLVQf-Y160C9T6DuLNCU4SyWXcWGL5BL35V8wnsFge1KBoceuXE3w/4ly/nnrLRX3bRkiC0mJ4FNxUug/h0/h001.UMohdNtZ0J0AmJcMt39fNln7Wp-Hees8zUBMIPqPn1w"><span class="translation_missing" title="translation missing: en.templates.posts.email.header.read_online">Read Online</span></a></p></td></tr><tr><td class="dd" align="center" valign="top" style="padding:15px 0;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top"><h1 style="text-align:left;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-weight:Bold;font-size:32px;color:#2A2A2A;padding:2px 0;line-height:38px;"> How A Vision Transformer Just Broke The ARC-AGI Benchmark </h1><p style="text-align:left;font-family:'Helvetica',Arial,sans-serif;font-weight:normal;font-size:20px;color:#3E3E3E;padding:5px 0;line-height:24px;"> Plus more on Seer, Virtual Width Networks, SAM 3, and Evolution Strategies at the Hyperscale </p></td></tr></table></td></tr><tr><td style="line-height:0;"><div data-open-tracking="true"> <img src="https://elink4f7.mail.bycloud.ai/ss/o/u001.3wmUuY8gEWd4_869a_eXcg/4ly/nnrLRX3bRkiC0mJ4FNxUug/ho.gif" alt="" width="1" height="1" border="0" style="height:1px !important;width:1px !important;border-width:0 !important;margin-top:0 !important;margin-bottom:0 !important;margin-right:0 !important;margin-left:0 !important;padding-top:0 !important;padding-bottom:0 !important;padding-right:0 !important;padding-left:0 !important;"/> </div></td></tr></table></div></td></tr><tr id="content-blocks"><td class="email-card-body" align="center" valign="top" style="padding-bottom:15px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top" style="padding: 20px 28px 20px;" class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin: 0 auto 0 auto"><tr><td align="center" valign="top" style="width:300px;"><p style="opacity: 0.8;"><b>In partnership with</b></p></td></tr><tr><td align="center" valign="top" style="width:300px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DUiN96-Eq7pUHzwEhy5j26si4263VjekR_qS3PSxqrqsyj11G-GLZXMmd2v8kgcSMyyFxCR5p90ObjnzU7AyWbSGcImYcTK02Wz2rvtlFNUuFnDtwZEDEgE8nldaSQyyBUpy3SW-er8FSL6evUxq6Xc7g0ikRGz9QRJW1i23t6NCiLgeZIF9p6UTutjzGSnMdwFbdnftvYJZcVXTBn2PZTgWxkJPWFs-E-79YKGvh4vjJ8D0I34SRvzhlvL7r71yiC4IKTTQawI9jIto_H0mecQhFjSYwVSbtHEG1esZPkyIqg-mlYhijVIEfKRt04v2zupqfXu3-NQXGyHUUbmwP_rQ_7bbGUBlKVmfFwaNFhiWRewz8vctAu_E8BkVFxYz3IttnOwQ1tneUaBewG5hDQ2c7sJSRCSAucebf1tUtuY0MsI0Ehf6XPHKPEh7cjqm4JNTqPWlXt_d2Po6nzD0sU0GxcLFmt1QnkLdjWpLP4lonLzPq9S8HnMsHZ9zfKgCkaa3iAk1cxylkXglc1-Kwg/4ly/nnrLRX3bRkiC0mJ4FNxUug/h1/h001.vIyF77EI1DxTyufYuJqq5ubRwPE36rRGrIRPQILHq5E" target="_blank" rel="noopener noreferrer nofollow" style="text-decoration:none;"><img src="https://beehiiv-images-production.s3.amazonaws.com/uploads/ad_network/advertiser/logo/93cfd36b-18ec-4dfb-8fd3-d0c5d96d3a7a/UDACITY.png" height="auto" width="300" style="display:block;" lborder="0"/></a></td></tr></table></td></tr><tr><td id="nov-18-th-nov-24-th-33-latest-ai-re" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:normal;padding:0px 28px;text-align:left;"><h6 style="color:#2A2A2A;font-weight:normal;mso-line-height-alt:87.5%;"><i>Nov 15th ~ Nov 25th</i><br><i>#83 Latest AI Research Explained Simply</i></h6></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="industry-news-in-1-line" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;">🗞️ Industry News in 1 Line</h2></td></tr><tr><td style="padding-bottom:12px;padding-left:50px;padding-right:40px;padding-top:12px;" class="ee"><div style="margin-left:0px;" class="edm_outlooklist"><ol start="1" style="list-style-type:decimal;margin:0px 0px;padding:0px 0px 0px 0px;"><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;">♥ 1.4k</span></span> <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.qZVn6KJQuMivjuNasJr7IOXAgG6DTmwRkVg9qw8sdyzJ6FLDoIVrWTxEnnEeHm94_1NtBn8VRhJZmcIYuBddZVQMBgLUbbVIXWxEW7dMkBAAtxY5NDjTAtT43g6TZJ2Ai1Ih0IIvcfZrzewVHMzMIagMOjFHQWogwzVEFQVh0eCh16wnrFQCCu3aqRmG3xpqFPwkeD8EFOTJJ-wC_7yFBoWRWJEaw-2Exr7LkZnf8Bh-8LGAVIAj0m_Z1iG0KAkOSKDNkVWezA4wvPWXm18PmoJShznLXkd7qF6G0AuIBtYOFbasGu9VfzO-u2oB6_Bw3nJERX4_95b6L0SXO_kfMThjgHEpBrbtLINNWsmN-2c/4ly/nnrLRX3bRkiC0mJ4FNxUug/h2/h001.NZ8vtRTODgC7LPJSa4kzsnS4I-Mn-5fIT8837f1js3w" target="_blank" rel="noopener noreferrer nofollow"><span>INTELLECT-3</span></a>: Prime Intellect Scaled RL to a 100B+ MoE model on their own end-to-end stack, achieving SoTA for its size. </p></li><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;">♥ 2.9k</span></span> Black Forest Labs announces <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.oB7zuO_W-X4Toa45C28ngzZ6l89r5chpv9C16dwxpsGBOPAIdRMuqubYF07SCm1QS5JY0hZArW-acU3dnbnx-_bTkmi2MeHHN40lnLZjkXC7dN5reHS1WEWasWmPEr0HUS0e9ZIu63XnRbT4LiCw3_Py1jy3F-7omZv_Fj2-wmNpkDKNn_ttLSnLt6xRllY5-7bmm01LsYqX31uJrF4o9K5KUMfpxjNEYT0-nG4V4rb9GUTYto4hw8m5t5lNbCnMhDwEzY33V6EGL3w27oBv9g/4ly/nnrLRX3bRkiC0mJ4FNxUug/h3/h001.9xht0VJ5nM5j_jNJYioa_fhGnXKGU0WsINjZ9VvA0Xc" target="_blank" rel="noopener noreferrer nofollow"><span>FLUX.2</span></a>, their latest open weights image generation model. </p></li><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;">♥ 11k</span></span> DeepSeek announces <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.VomAAYwkCjux8i_FMc4kJenfjI5JRwchmV1otB2zAaTBE0izwSEXmhP3Fb82bb-B5rSOQ41rDF7n7MHC7embK7t8JX5bgawNAsIFNtAOvL2XW4v4XtUku_7NYEBC_vNwqM6SElafhRJikPPtOeP8vqt4eBhhdU-It0xHzYyLOMJNsxOt5ykTnaRC55WUPVIVOeOrV5Sd8kmPvnPG7ccGC6WjVR-4korK0YDaLSzWsky5r3gZYUc0nrGlwqTmaHAy5Zw533vooxKEaDVyiAqAju-BHw4MWIum6o0AT-YpZIPin3VuUCKTSyL4kwE3EBlxx3qlypNeqcauPvN0M9ay9g/4ly/nnrLRX3bRkiC0mJ4FNxUug/h4/h001.VY0ejnwn9ryzBhCaohKkgxjrx_yO4wjCTEKIxLMh730" target="_blank" rel="noopener noreferrer nofollow"><span>DeepSeekMath-V2</span></a>, the first open source model to reach gold on IMO, also ranking first on ProofBench-Basic, and second on ProofBench-Adv, right behind Gemini-3 Pro </p></li></ol></div></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="save-55-on-jobready-ai-skills" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:normal;padding:0px 28px;text-align:left;"><h3 style="color:#2A2A2A;font-weight:normal;mso-line-height-alt:125.0%;">Save 55% on job-ready AI skills</h3></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DUiN96-Eq7pUHzwEhy5j26si4263VjekR_qS3PSxqrqsyj11G-GLZXMmd2v8kgcSMyyFxCR5p90ObjnzU7AyWbSGcImYcTK02Wz2rvtlFNUuFnDtwZEDEgE8nldaSQyyBUpy3SW-er8FSL6evUxq6Xc7g0ikRGz9QRJW1i23t6NCiLgeZIF9p6UTutjzGSnMdwFbdnftvYJZcVXTBn2PZTgWxkJPWFs-E-79YKGvh4vjJ8D0I34SRvzhlvL7r71yiC4IKTTQawI9jIto_H0mecQhFjSYwVSbtHEG1esZPkyIqg-mlYhijVIEfKRt04v2zupqfXu3-NQXGyHUUbmwP_rQ_7bbGUBlKVmfFwaNFhiWRewz8vctAu_E8BkVFxYz3IttnOwQ1tneUaBewG5hDQ2c7sJSRCSAucebf1tUtuY0MsI0Ehf6XPHKPEh7cjqm4JNTqPWlXt_d2Po6nzD0sT-HSjuWOtSkMxxEYQetnoM9ZNpSgI8yUVSrLFh2lmyu825nQ7jOSv_IgPsdIeC4DA/4ly/nnrLRX3bRkiC0mJ4FNxUug/h5/h001.aSXD9gtarojed93p4VldqWBptX8kahidYLD83zHo2y0" rel="noopener noreferrer nofollow" style="text-decoration:none;" target="_blank"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/82dd9b38-c151-4463-93e7-87b03670383a/A.jpg?t=1764177977" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></a></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Udacity empowers professionals to build in-demand skills through rigorous, project-based Nanodegree programs created with industry experts. </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Our newest launch—the Generative AI Nanodegree program—teaches the full GenAI stack: LLM fine-tuning, prompt engineering, production RAG, multimodal workflows, and real observability. You’ll build production-ready, governed AI systems, not just demos. <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DUiN96-Eq7pUHzwEhy5j26si4263VjekR_qS3PSxqrqsyj11G-GLZXMmd2v8kgcSMyyFxCR5p90ObjnzU7AyWbSGcImYcTK02Wz2rvtlFNUuFnDtwZEDEgE8nldaSQyyBUpy3SW-er8FSL6evUxq6Xc7g0ikRGz9QRJW1i23t6NCiLgeZIF9p6UTutjzGSnMdwFbdnftvYJZcVXTBn2PZTgWxkJPWFs-E-79YKGvh4vjJ8D0I34SRvzhlvL7r71yiC4IKTTQawI9jIto_H0mecQhFjSYwVSbtHEG1esZPkyIqg-mlYhijVIEfKRt04v2zupqfXu3-NQXGyHUUbmwP_rQ_7bbGUBlKVmfFwaNFhiWRewz8vctAu_E8BkVFxYz3IttnOwQ1tneUaBewG5hDQ2c7sJSRCSAucebf1tUtuY0MsI0Ehf6XPHKPEh7cjqm4JNTqPWlXt_d2Po6nzD0sW8QZXPaAGq0kyuJavBokWfQpxEh0gsEumH3oEFLpXD4W21SGiXR8etgxvrM2lajKg/4ly/nnrLRX3bRkiC0mJ4FNxUug/h6/h001.erdlB410jScFvE04cFvfDJhZ7Ix6YMMp9xwtPB8dntw" target="_blank" rel="noopener noreferrer nofollow"><span>Enroll today</span></a>. </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> For a limited time, our Black Friday sale is live, making this the ideal moment to invest in your growth. Learners use Udacity to accelerate promotions, transition careers, and stand out in a rapidly changing market. <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DUiN96-Eq7pUHzwEhy5j26si4263VjekR_qS3PSxqrqsyj11G-GLZXMmd2v8kgcSMyyFxCR5p90ObjnzU7AyWbSGcImYcTK02Wz2rvtlFNUuFnDtwZEDEgE8nldaSQyyBUpy3SW-er8FSL6evUxq6Xc7g0ikRGz9QRJW1i23t6NCiLgeZIF9p6UTutjzGSnMdwFbdnftvYJZcVXTBn2PZTgWxkJPWFs-E-79YKGvh4vjJ8D0I34SRvzhlvL7r71yiC4IKTTQawI9jIto_H0mecQhFjSYwVSbtHEG1esZPkyIqg-mlYhijVIEfKRt04v2zupqfXu3-NQXGyHUUbmwP_rQ_7bbGUBlKVmfFwaNFhiWRewz8vctAu_E8BkVFxYz3IttnOwQ1tneUaBewG5hDQ2c7sJSRCSAucebf1tUtuY0MsI0Ehf6XPHKPEh7cjqm4JNTqPWlXt_d2Po6nzD0sSB5X0IWacYWW0mJHGM_yj0lYODq2W_8U_CbgKJDJvXbaTHlGMQDx_e9q21yFOAbxw/4ly/nnrLRX3bRkiC0mJ4FNxUug/h7/h001.jfSQ6AzZkD2xBKMcQY0LOXFq2izOr_1sNNsCUDY3pko" target="_blank" rel="noopener noreferrer nofollow"><span>Get started today</span></a>. </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DUiN96-Eq7pUHzwEhy5j26si4263VjekR_qS3PSxqrqsyj11G-GLZXMmd2v8kgcSMyyFxCR5p90ObjnzU7AyWbSGcImYcTK02Wz2rvtlFNUuFnDtwZEDEgE8nldaSQyyBUpy3SW-er8FSL6evUxq6Xc7g0ikRGz9QRJW1i23t6NCiLgeZIF9p6UTutjzGSnMdwFbdnftvYJZcVXTBn2PZTgWxkJPWFs-E-79YKGvh4vjJ8D0I34SRvzhlvL7r71yiC4IKTTQawI9jIto_H0mecQhFjSYwVSbtHEG1esZPkyIqg-mlYhijVIEfKRt04v2zupqfXu3-NQXGyHUUbmwP_rQ_7bbGUBlKVmfFwaNFhiWRewz8vctAu_E8BkVFxYz3IttnOwQ1tneUaBewG5hDQ2c7sJSRCSAucebf1tUtuY0MsI0Ehf6XPHKPEh7cjqm4JNTqPWlXt_d2Po6nzD0sQ1r4HhMTclpcDnsa1XPZuvGv5wGZWDvO-C_qsjydykR8PM4EjHhE3fn7hwsowzaRg/4ly/nnrLRX3bRkiC0mJ4FNxUug/h8/h001.uCvteJdoPoctRxx4XzG7ITQny6jG1MfDbDWhp2A1qmw" target="_blank" rel="noopener noreferrer nofollow"><span>Enroll Now & Save 55%</span></a></p></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="virtual-width-networks" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h1 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:175.0%;"><b>Virtual Width Networks</b></h1></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><i>ByteDance Seed</i></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 196 </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> Transformer Architecture </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> What if we could get the benefits of a much wider AI model without the usual computational explosion? Standard Transformers face a quadratic cost increase when expanding their hidden size, which makes wider models expensive. Virtual Width Networks offer a clever way around this by decoupling the embedding width from the backbone’s hidden dimension, letting the model use richer representations while keeping computation nearly the same. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/bc094673-75d3-4c2e-bb9d-78741ecd43fa/CleanShot_2025-11-27_at_17.20.53_2x.png?t=1764244267" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr></table></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/29e421a9-ed48-4c22-9139-04b2c86d6caf/CleanShot_2025-11-27_at_17.19.42_2x.png?t=1764244194" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Standard Transformer vs. Virtual Width Network (VWN).</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Inside VWN, the process starts with an over-width embedding that packs more information per token. As these widened representations move through the network, Generalized Hyper-Connections act like lightweight adapters. They compress the wide embeddings down to the backbone’s size for each attention and feed-forward operation, then expand the results back to the over-width size before passing them to the next layer. This mechanism allows the model to maintain a high-capacity embedding space without inflating the core computational load. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/d8b50e86-f1ff-4de3-9815-c65df795d2dd/CleanShot_2025-11-27_at_17.20.28_2x.png?t=1764244237" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Overview of Virtual Width Networks (VWN).</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> To make the most of this expanded space, VWN is paired with multi-token prediction, where the model learns to predict several future tokens at once. This denser supervision helps the model utilize the extra representational freedom effectively. In large-scale tests, an <b>8× virtual width expansion</b> reached the baseline’s next-token loss using 2.5× fewer tokens and its next-2-token loss with <b>3.5× fewer tokens</b>, with the efficiency gap growing over time. </p></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.fUNb4GdFo9D3F8WuLArtoZr-f6keVrG1GKuVv1wQKvrunVc5DrzVrZdppN-bp9Y3X0FHe6_BLqQmkPFTzcdFvTHEOOtl5EgEHYdNYfh6vx9l9V-joudkFstFvwktwj_dVHsXcxSYnV5K5iJAu1viflP-9_SqioZeKyl7CnWvZI0fXaKnebQERY1U5Enwc8uNHKGz6Kt2y6rFRX35YI1VQ5qqlRo6iP1zZHMmSaL23OFhPs72FXIR8s3sajk-uNAk2NBIcYx_aDbHGs8FwXytKA/4ly/nnrLRX3bRkiC0mJ4FNxUug/h9/h001.Q346ICuGaZQaspOy3U8rPCFenVuVuNQgHfJmWbzeX7I" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="sam-3-segment-anything-with-concept" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;">SAM 3: Segment Anything with Concepts</h2></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><i>Carion et al. [</i>Meta Superintelligence Labs<i>]</i></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 424 </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> Segmentation </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Segment Anything Model 3 (SAM 3) helps computers detect, segment, and track every instance of an object in images and videos using simple prompts like a noun phrase or example image. Earlier models could only segment one object per prompt, but SAM 3 can <b>find all matching objects at once</b>, which makes it much more useful for real-world tasks. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/3326f1a5-7098-43fe-a1fe-b71946d8ff48/model_diagram.png?t=1764243834" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> SAM 3 works by combining a detector and a tracker that share the same vision backbone. The detector identifies objects based on your prompt, using a special "presence token" that first decides if the concept is in the image at all. This separation helps the model focus better on where objects are located. The tracker then follows these objects across video frames, using memory to keep their identities consistent even when they move or get temporarily hidden. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/ba108e90-52d0-45bd-a679-c93b6f3eb81d/image.png?t=1764243994" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> In tests, SAM 3 doubled the accuracy of earlier systems and set new standards on the Segment Anything with Concepts benchmark. It runs quickly, processing an image with over 100 objects in just 30 milliseconds. </p></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.fUNb4GdFo9D3F8WuLArtoSFzg-MO-RjWYRwnRxzn3IHnMqc1H9QrqLz69tQpafhrdvmYpSdwof4sufmu7xNzokqH2l6k_nGSptEaRniSTxh4Cv5wmvERHjnxkYXZ_vYoB9STqZvPS1-E-g4XdcXngDUrOOmDp_Vbjihu_J3Bo6lXKBhG1LUlQcmggF20uUpH-wxJI1hiSdpZUNBvfqFVTCDbrE7VpW7v_D7TzekmWmQJchAwK2vLvta90g1IhpD-GFdnQhc9dDukbl-W0xadGw/4ly/nnrLRX3bRkiC0mJ4FNxUug/h10/h001.OKQiY-RBk7y-t3k7_lED0VPlpfvJpINZFGxAWU1R-Tc" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="evolution-strategies-at-the-hypersc" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;">Evolution Strategies at the Hyperscale</h2></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><i>Sarkar et al. </i>[FLAIR - University of Oxford, WhiRL - University of Oxford, MILA– Québec AI Institute, NVIDIA AI Technology Center, CIFAR AI Chair] </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 430 </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> LLM Scaling </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Training massive neural networks with billions of parameters is a major challenge, especially when using evolution strategies (ES) for optimization without backpropagation. While ES methods excel at handling non-differentiable or noisy goals and scale well through parallelization, the standard approach becomes too slow and memory-heavy for large models. This happens because generating and processing full-sized matrix perturbations across many workers demands immense computational resources. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/9708031c-28be-4b49-a6ae-779642bbcc57/CleanShot_2025-11-27_at_17.10.21_2x.png?t=1764243632" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><b>EGGROLL</b> addresses this by employing a low-rank learning technique. It creates two smaller random matrices, A and B, and uses their product to form a low-rank perturbation instead of a full-rank one. This change significantly reduces memory needs and speeds up calculations during forward passes, as the system works with much smaller matrices. Even with a large population of workers, the combined updates remain effective, allowing the method to maintain high performance while cutting down on overhead. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/e0bdfd88-62fd-497a-a7c4-472521adde5f/header.png?t=1764243675" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Experimental results show that EGGROLL <b>boosts training throughput by a hundred times</b> for billion-parameter models at large population sizes, nearly matching the efficiency of batch inference. This advance makes evolution strategies far more practical for modern AI systems and makes it a feasible alternative where backpropagation isn't feasible. </p></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DUiN96-Eq7pUHzwEhy5j28yjf9KIXZdsXoh1WlHvvKm9CQnYGsPJ0qFN8xjEzRy1Dya2NeXA9lHj4wDNETnLPGdg6bgI261oYLPOl0jHrMs61LIkXOVfGN0xj6NKZgLzo0AGLGLed_RNcqGUR8dJ_74qKv81SfM_5hRsAIDziTM1FVDJ4HcLN9G6d-C-eZB4aC9zC8oCCQjbKKzLhSimQE06QuswYeZymu7GncCSVlsfx4_ZScd_yrl9dCJW5-oQb4I17IbDieT2K4Rv3JhuGTW_v6aKmmjOjvy1zcKpsBA/4ly/nnrLRX3bRkiC0mJ4FNxUug/h11/h001._OJhRvP9nNHOmKHYeW_Yy1DxxoizTAbBb9XT9pwSk98" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="seer-online-context-learning-for-fa" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h1 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:175.0%;"><b>Seer: Online Context Learning for Fast Synchronous LLM Reinforcement Learning</b></h1></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Qin<i> et al. [</i>Moonshot AI, Tsinghua University<i>]</i></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 694 </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> RL </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Reinforcement learning is important for training large language models, but the rollout phase often slows everything down due to uneven workloads and inefficient resource use. Seer tackles this by noticing that responses from the same prompt tend to have similar lengths and patterns, allowing it to balance the load dynamically and speed up the process. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/4ad00c3b-ebe7-4a0f-95cd-cfa1560b4465/CleanShot_2025-11-27_at_17.08.56_2x.png?t=1764243549" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Challenges and Seer’s solution for long-generation rollout.</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Seer splits request groups into smaller chunks and schedules them across instances to prevent memory issues and keep GPUs busy. It also uses an early "speculative request" to estimate how long each group will take, helping it prioritize longer tasks and maintain high batch density. Additionally, by building a shared draft token tree from similar responses, Seer enables faster speculative decoding without the overhead of traditional methods. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/6a908ecb-4eaa-4879-970d-3823a97c29d5/CleanShot_2025-11-27_at_17.09.29_2x.png?t=1764243576" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> In tests, Seer boosted rollout throughput by 74% to 97% and cut long-tail latency by 75% to 93%, making synchronous RL training much more efficient. This approach could significantly reduce training times for reasoning models, though it’s primarily designed for synchronous settings where strict policy alignment is needed. </p></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.fUNb4GdFo9D3F8WuLArtoZr-f6keVrG1GKuVv1wQKvrikNPLXykwYS5YFBrPPia2-PXSKkUIb0t-1bxXmYyDy9F3RHw2PGntcTojJmH8bg8kbmGTwfuJ-uJmuDSB9w3QtVxavoYWN8WlofILp3j_W8lgc5nqX2w5QpYvhTNz3EJS1_-D1GK-ZXo20B3fSUe7OTQ1j2xWZ2sR5YGtDIebmtp7OJfYOlXEVjb5qMCZb_71jDgd9FAuIcPZle5ndTNnoqCwchHVIo9AOSVRqbH7eA/4ly/nnrLRX3bRkiC0mJ4FNxUug/h12/h001.iD6L8aXvkeyD6ZsJEnY6-nTg_pXwE6CBFFDzeEmOwPQ" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="arc-is-a-vision-problem" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h1 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:175.0%;"><b>ARC Is a Vision Problem!</b></h1></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Hu<i> et al. [MIT]</i></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 868 </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> Vision LLM </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> bycloud’s pick </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> ARC has long challenged AI systems with its puzzle-like visual tasks, but most approaches treat it as a language problem. VARC rethinks this by viewing ARC as an image-to-image translation task. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/416804cf-c5e9-4405-bca2-63d2183fb2f4/CleanShot_2025-11-27_at_17.07.42_2x.png?t=1764243476" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>The ViT architecture in VARC</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> The method represents each task on a "canvas" that acts like a natural image, allowing standard vision models like Vision Transformers to process it. By using patches that group nearby pixels, the model learns spatial relationships and visual patterns rather than memorizing rules. This setup also supports data augmentations like scaling and shifting the input, which help the model generalize to new tasks it hasn’t seen before. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/52e20b58-db62-406e-9266-cfe2f6327a8f/CleanShot_2025-11-27_at_17.08.23_2x.png?t=1764243512" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>System-level comparisons on the ARC-1 and ARC-2 benchmarks.</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> In tests, VARC achieved <b>60.4% accuracy</b> on the ARC-1 benchmark when using an ensemble, matching average human performance. This shows that vision-centric models, trained only on ARC data, can compete with large language models that rely on internet-scale pretraining. </p></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DUiN96-Eq7pUHzwEhy5j28yjf9KIXZdsXoh1WlHvvKmACebEIFadimTiLncea2w2SDQA_4zwfd59ilKTMNI2VzRjYS4DQlKyx405cbL13ZMh9jIahf3cKh3oAUxY60J2pmhc5HF4FKHIAalxKKlqVprRJMC5tEAJvcungaZ7n6ZwgTUuhVSGZvIYsMwy4WzJSP-Ltjx396ta5156sEH0tXP-opvlVE3TgBffdXc-fed1H0B2qWjvZ7IPcdTF23sE9xzfqU_J9_2vbXJBo4wGzxlMkxNSZReeeZQXuF3GXvw/4ly/nnrLRX3bRkiC0mJ4FNxUug/h13/h001.dLIKOnVfW0EFkTTBz35E4VFY1CAqrjW4IaeMxxb1rmM" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td class="dd" align="center" valign="top" style="padding:20px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.amatuKKICSickUKplYJXmF6U5Gfz7Ypkzogc36GdU_2g5Ar8491IUUOmZDzVnv3d76GA3hHbi3kLjhZmftuXGM9UUuCgjsTWcGXvuMPVOn3fEZiuhUH8G8U7MCCe2sV7-Yu8Vnj8-zL1T8G_goA8zIPcrgynaBD1YjmcktL74MO63D2gYMKt2pi_6lp1jORMY2PCl-AGwHqyqFdHKGiWdComyo1kRf8NdDltwjmIKZw0WTnUrJeKznuyH36Omb4u2UbhHtCil56Wsll9Rlp6a2xkTzCh_xLSitfNO0sYSOo/4ly/nnrLRX3bRkiC0mJ4FNxUug/h14/h001.CyhKxgeROw0P9zM-sIGdfIQNDXUbjeCliHvoEVyuSS0" style="text-decoration:none;"><table align="center" width="100%" cellpadding="0" cellspacing="0" border="0" role="none" style="max-width:520px;margin:0 auto;"><tr><td class="p" width="100%" style="padding:2px;border:none;"><table width="100%" cellpadding="0" cellspacing="0" border="0" role="none"><tr><td align="center" valign="top" style="width:100%;"><div style="max-height:0;position:relative;opacity:0.999;width:100%;mso-hide:all;"><div style="display:inline-block;width:100%;padding-top:25%;"><img width="20%" height="auto" loading="lazy" alt="" style="border:0;" src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/static_assets/youtube_play_icon.png"/></div></div><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.amatuKKICSickUKplYJXmF6U5Gfz7Ypkzogc36GdU_2g5Ar8491IUUOmZDzVnv3d76GA3hHbi3kLjhZmftuXGM9UUuCgjsTWcGXvuMPVOn3fEZiuhUH8G8U7MCCe2sV7-Yu8Vnj8-zL1T8G_goA8zIPcrgynaBD1YjmcktL74MO63D2gYMKt2pi_6lp1jORMY2PCl-AGwHqyqFdHKGiWdComyo1kRf8NdDltwjmIKZyVWI74PDGTuacrFMx-9Sx2iRhqYr-3IZlm6KFaeMNTXbiA9o5ebh-_zh9V0UccW8g/4ly/nnrLRX3bRkiC0mJ4FNxUug/h15/h001.dZ2Uc73m-agoDz6DwPeezjTYRxp3qdT4W0W9H5A8vgc" style="text-decoration:none;"><img src="https://i.ytimg.com/vi/XFhUI1fphKU/maxresdefault.jpg" width="480" height="auto" loading="lazy" alt="YouTube video by bycloud" style="display:block;height:auto;border:0;outline:none;text-decoration:none;background-color:#000000;width:100%;"/></a></td></tr><tr><td><p style="font-size:12px;font-weight:500;font-style:italic;font-family:Helvetica, Calibri, sans-serif;color: #686a6d; padding-top:0 !important;padding-bottom:6px !important; padding-left:4px !important;"> The Chinese AI Iceberg </p></td></tr></table></td></tr></table></a></td></tr></table></td></tr></table></td></tr><tr><td align="center" valign="top"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td><tr><td class="b" align="center" valign="top" bgcolor="#2a2a2a" style="padding:0px 0px 0px 0px;border-style:solid;border-width: 0px 0px 0px 0px;border-color: #2a2a2a;border-bottom-left-radius:10px;border-bottom-right-radius:10px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top" bgcolor="#73ddff" style="padding:12px"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td><span style="padding-left:1px;"></span></td><td align="center" valign="middle" width="75" style="width:75px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.1muhFWIqieRYpaJ-FbWSCQqcWoV4NNHHr5SkP9THApWUO4S9eWSDBFDMKQ83N4CY1l4kXQTU9YnEEqXRrg_2uhS94rQOKDl60C6UO57Zu1mJCFi_zhfD-a_hnJHdTQ7EpDXhg5T32nIgkRWGEDpp_750mDUA7OArRComJqEg4mcLI9bYiiMDOsuYVW0IrPm9IQJrmA2DduOQQYxElkOIS6SYZl8Nri3WA8tH88Cef-x8yDrzr9RhAS7-jzin_tv12h-MgffRxJTgqtKaiCne-g/4ly/nnrLRX3bRkiC0mJ4FNxUug/h16/h001.0cgFPS3Y0msp9kn-CvSLiworoI6GVlRLSqXuPpFu4-I" style="text-decoration:none;"><img width="22" height="22" alt="tw" border="0" style="display:block;max-width:22px;color:Dark" src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/static_assets/x_dark.png"/></a></td><td align="center" valign="middle" width="75" style="width:75px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.amatuKKICSickUKplYJXmBoQnQ9VXnB2zTxBG4HeHBi5iti4l06m5fR1UTFq_vFgQaGMmutCjJbuBFU8WHbRj6heToGsiZHlry3dxu5DEimeQbpBAMyhKdSbaWrmIf3bGq-mZ9Vl00WVwcwwRAVtyhw_mYqQqC5_paK5pChuTn-ALYGSVWticTrZLTrrtU3JccTvhEGyyWAam9q19iLBN_5TZh_quJAg5qX3TdWWZBBZMzsJjCFO2zx4z4Xt1tmXSDmSZ_JRgtTOkvSG6CeJKA/4ly/nnrLRX3bRkiC0mJ4FNxUug/h17/h001.PbOOfutAxNf0ftqz5rW7gWCHeuCQBs93Xxqvk5gJk5U" style="text-decoration:none;"><img width="22" height="16" alt="yt" border="0" style="display:block;max-width:22px;color:Dark" src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/static_assets/youtube_dark.png"/></a></td><td><span style="padding-left:1px;"></span></td></tr></table></td></tr><tr><td height="10" style="line-height:1px;font-size:1px;height:10px;"> </td></tr><tr><td class="w" align="center" valign="top" style="padding:15px 15px 15px 15px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top"><p style="font-family:'Verdana',Geneva,sans-serif;color:#FFFFFF!important;"> Update your email preferences or unsubscribe <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.c6q0w4g5sodbtO4I1B_pxWc4htTObwdorovK0nFHVH-4pUdVE0ELYH5DsNemk732SjNwhPNJ25r0O8B5vYifsBhEpz-DJgyVFmavJPa0OyKRRnvw4o7XGyvIv7PRofnmAcZg_ezVV33OAcbwUfkCzmoldIc_gswqeigdvJgl3oWU7gGTG4YBgiqeLrvYuBsZsUwDgFbH0V6Bb7mnlx0tbmI3x8FwPvvZ3q-rwSoWo5a55ETNWyqMFgginBEK_hk9eSO1-3MoWJVpcjG5R8z7jc1VopX-y0Kd8SwCd1ATvS3LVITs8WIhqrVguY8va6ugBqbb7MilVGo4plsWXQq9sZ8chr4k0J0hD22OnEU6PSk_MtriH7cr5Yo-JwQnVELY3JKq_srwC3SI5NiDcwb4GzRilKkn45m_CH-r3Qxo4zc15sAsLAm9sm6ceVb-6J5dWLjKZvayVQoQoOCTnQ4XQQGaRwIdf4MULZ5_yCIkqfZ9JJhSI1tGEvP4jTGEc4YYeVdXgZtpyVL0UUSBVqVCDnYUo27a0qNWlgdDtACbbNwRxO8FTGPrdSsPcP7FuqMY6BgCs9VYkNyuLyV5-t61gIabnZuGEz00Uev9wwtdclu0LSegzGld7eYDua83XommOx_OePO4J-d9zL7TwgfugtDuTOqHSZi46uNUDumhXtGwlNeVOzwbsAbkMw6ZbD_VOiWFCw6bVZ2IBO9W0ggR2Sd6iNpkG7Ne4WyX2v9W33ITdN_up8tg1lBF3lyHGAtNOlB8DoyMytgXvLyd1nKM8IA7vOHAuzbDyh9SNjvuiSsQcvRoImkIDySKORuFGzAz3XutWGzXH79-he26b62YFCUQwIGnwMMnVtiNR3PHE0M7E-KjdZfzFMCkrTfkv1vP0tpOqA6JmxjVzFilbqTsJCYcEVhC8uRdgX5i8305xz2hSkAYjnGV6L8Yn5dTOvxkEfJXEQj9L4yivThTItFxhe4uFKhlvYRNm8KhNcQZroTh2WvJF-rwYqOekn8zqDnQ9j_WhlVtjPhpaD_gFobdJ8Rz77d8FBy2btYWR_4jfm4/4ly/nnrLRX3bRkiC0mJ4FNxUug/h18/h001.6oZeV0I_80aGq1AdYfgplur_bxlRbYMHkHYXPCHSPvc" style="text-decoration:underline;text-decoration-color:#FFFFFF!important;color:#FFFFFF!important;"> here</a></p><p class="copyright" style="font-family:'Verdana',Geneva,sans-serif;color:#FFFFFF!important;"> © 2025 bycloudai </p><p style="font-family:'Verdana',Geneva,sans-serif;color:#FFFFFF!important;"> 228 Park Ave S, #29976, New York, New York 10003, United States </p></td></tr><tr style="display: table-row !important;"><td align="center" valign="top" style="padding-top:20px;" style="display:table-cell !important;"><table role="none" border="0" cellspacing="0" cellpadding="0" align="center" style="display:table !important;"><tr style="display:table-row !important;"><td class="u" align="center" valign="middle" height="32" style="height:32px;display:table-cell !important; max-height: 32px !important;margin:0px !important; background-color: #ffffff !important;"><a style="line-height:32px !important;text-decoration:none;display:block !important;" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DUiN96-Eq7pUHzwEhy5j28olDWFpV5DDKfdk_OdOKOiTtVF8vHwA0N8jX2mDtvOd0_IvTs2FUbmOwLq_GBq3oLUtQQmT2ac4qsOupDY0suSKn4tG7sxLyY12EWjEB7n6xe26dX3pi-VNzjm-ZP6k1GnMw17FMLUlcuUfMRdMnNOsu21VoK-H-aVCPRu3mZH2AVyaoxJYxtLUiH2bN2dAcj9rJpXLCvJif07J-GGo76j2JHitpKl02ferNhI42-gV/4ly/nnrLRX3bRkiC0mJ4FNxUug/h19/h001.iyf1nCUaAtq397245fm5MAz22CwuaiqIdBn6phqiFlg"><img src="https://media.beehiiv.com/output-onlinepngtools.png" width="16" alt="beehiiv logo" style="display:inline-block !important;max-width:16px !important; vertical-align:-3px !important;width: 16px !important;" border="0"/><span style="padding-left:11px !important;display: inline-block !important;">Powered by beehiiv</span></a></td></tr></table></td></tr><tr><td align="left" valign="top" height="2" style="height:2px;"><a href='https://elink4f7.mail.bycloud.ai/ss/c/u001.CxDkkVpJsBdVoe83c_tBWsHIaP4XNp0WgUYqLvHcKk_3uqk_KIkz4ddLinhFbud6JuxLFdSUhYnR7b1NSsmbtzXNGNblnEEMKUtkCAjkn8Y/4ly/nnrLRX3bRkiC0mJ4FNxUug/h20/h001.nwdoRYVD_6scSGHYc8jIVnZ1pRFbVhb1DGEV_riqPTE' style="color: #2a2a2a !important; cursor: default; font-size: 1px; text-decoration: none;"> Terms of Service </a></td></tr></table></td></tr></table></td></tr></td></tr></table></td></tr></table></td></tr></table></td></tr></table></div></body></html>