<!DOCTYPE html><html lang="en" xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" style="font-size:16px;"><head></head><head><meta charset="utf-8"/><!--[if !mso]><!--><meta http-equiv="X-UA-Compatible" content="IE=edge"/><!--<![endif]--><meta name="viewport" content="width=device-width,initial-scale=1"/><meta name="x-apple-disable-message-reformatting"/><meta name="format-detection" content="telephone=no,address=no,email=no,date=no,url=no"/><meta name="color-scheme" content="light"/><meta name="supported-color-schemes" content="light"/><title>DeepSeek-V3.2 Technical Report Is Pure Gold</title><!--[if mso]><xml><o:OfficeDocumentSettings><o:AllowPNG/><o:PixelsPerInch>96</o:PixelsPerInch></o:OfficeDocumentSettings></xml><![endif]--><style>
:root { color-scheme: light; supported-color-schemes: light; }
body { margin: 0; padding: 0; min-width: 100%!important; -ms-text-size-adjust: 100% !important; -webkit-transform: scale(1) !important; -webkit-text-size-adjust: 100% !important; -webkit-font-smoothing: antialiased !important; }
.body { word-wrap: normal; word-spacing:normal; }
table.mso { width: 100%; border-collapse: collapse; padding: 0; table-layout: fixed; }
img { border: 0; outline: none; }
table { mso-table-lspace: 0px; mso-table-rspace: 0px; }
td, a, span { mso-line-height-rule: exactly; }
#root [x-apple-data-detectors=true],
a[x-apple-data-detectors=true],
#MessageViewBody a { color: inherit !important; text-decoration: inherit !important; font-size: inherit !important; font-family: inherit !important; font-weight: inherit !important; line-height: inherit !important; }
span.MsoHyperlink { color: inherit !important; mso-style-priority: 99 !important; }
span.MsoHyperlinkFollowed { color: inherit !important; mso-style-priority: 99 !important; }
.a { background-color:#dedede; }
.b { background-color:#2a2a2a; }
.c { background-color:#ffffff; }
.d { background-color:#fff0c8; }
.d2 { background-color:#FFFFFF; }
.d3 { background-color:#FFFFFF; }
h1 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h2 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h3 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h4 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h5 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h6 a { text-decoration:none;color:#2C81E5;font-style:italic; }
h1, h1 a, h2, h2 a, h3, h3 a, h4, h4 a, h5, h5 a, h6, h6 a, ul, li, ol, p, p a { margin: 0;padding: 0; }
h1 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:700;font-size:28px;color:#2A2A2A;line-height:42px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
h2 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:700;font-size:24px;color:#2A2A2A;line-height:36px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
h3 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:20px;color:#2A2A2A;line-height:30px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
h4 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:18px;color:#2A2A2A;line-height:27px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
h5 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:16px;color:#2A2A2A;line-height:24px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
h6 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:14px;color:#2A2A2A;line-height:21px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px }
p { font-family:'Georgia','Times New Roman',serif;font-weight:400;color:#2D2D2D;font-size:16px;line-height:24px;padding-bottom:8px;padding-top:8px;mso-margin-top-alt:8px;mso-margin-bottom-alt:8px; }
p a, .e a, ul a, li a, .h a, .h2 a, .h3 a { word-break:break-word;color:#2C81E5 !important;text-decoration:none;font-style:italic; }
p a span, .e a span, ul a span, li a span { color: inherit }
p .bold { font-weight:bold;color:#2D2D2D; }
p span[style*="font-size"] { line-height: 1.6; }
.f p { font-size:12px;line-height:15px;color:#2D2D2D;padding:0; }
.f p a { color:#2D2D2D !important; }
.g p { font-family:'Helvetica',Arial,sans-serif;font-size:14px;line-height:20px;font-weight:normal;margin:0; }
.g p a { text-decoration: underline; }
.i p { font-family:'Helvetica',Arial,sans-serif;line-height:23px;font-size:15px;color:#2D2D2D; }
.i p a { color:#2D2D2D !important; }
.i2 p { font-family:'Helvetica',Arial,sans-serif;line-height:23px;font-size:15px;color:#2D2D2D; }
.i2 p a { color:#2D2D2D !important; }
.i3 p { font-family:'Helvetica',Arial,sans-serif;line-height:43px;font-size:24px;color:#2D2D2D; }
.i3 p a { color:#2D2D2D !important; }
.h p a { color:#595959 !important; }
.h2 p a { color:#595959 !important; }
.h3 p a { color:#595959 !important; }
.f p a, .i p a, .i2 p a, .i3 p a, .h p a, .h2 p a, .h3 p a { text-decoration:underline; }
.j { border-top:3px solid #ffeb2d; }
.k p { padding-left:15px;padding-bottom:0px;padding-top:6px;mso-margin-top-alt:6px;mso-margin-bottom-alt:0px;mso-margin-left-alt:15px; }
.o { background-color:#FFFFFF;border:1px solid #F1F1F1;border-radius:5px; }
.o p { font-family:'Helvetica',Arial,sans-serif;padding:0px;margin:0px; }
.l p,
.l p a, .l a { font-size:14px;line-height:20px;font-weight: bold;color:#2D2D2D;padding-bottom:6px;mso-margin-bottom-alt:6px;text-decoration:none; }
.m p,
.m p a { font-size:13px;line-height:18px;font-weight:400;color:#2D2D2D;padding-bottom:6px;mso-margin-bottom-alt:6px;text-decoration:none; }
.n p,
.n p a { font-size:12px;line-height:17px;font-weight:400;color:#2D2D2D;padding-bottom:6px;mso-margin-bottom-alt:6px;text-decoration:none; }
.p { background-color:#FFFFFF;max-width:520px;border:1px solid #E1E8ED;border:1px solid rgba(80, 80, 80, 0.3);border-radius:5px; }
.q { font-size:16px;font-family:Helvetica,Roboto,Calibri,sans-serif !important;border:1px solid #e1e8ed;border:1px solid rgba(80, 80, 80, 0.3);border-radius:10px;background-color:#FFFFFF; }
.q p { font-size:16px;font-family:system-ui,Helvetica,Roboto,Calibri,sans-serif !important;color:#222222;padding:4px 0; }
.r { border:1px solid #E1E8ED !important;border-radius:5px; }
.s p { font-size: 14px; line-height: 17px; font-weight: 400; color: #697882; text-decoration: none; }
.t p { font-family:'Helvetica',Arial,sans-serif;font-size:12px;line-height:18px;font-weight:400;color:#000000;font-style:italic;padding:4px 0px 0px; }
.v { border-radius:10px;border:solid 0px #DFD150;background-color:#2C81E5;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;color:#FFFFFF; }
.v a { text-decoration:none;display:block;color:#FFFFFF; }
.w p { font-size:12px;line-height:15px;font-weight:400;color:#FFFFFF; }
.w p a { text-decoration: underline !important;color:#FFFFFF !important; }
ul { font-family:'Helvetica',Arial,sans-serif;margin:0px 0px 0px 25px !important;padding:0px !important;color:#2D2D2D;line-height:24px;list-style:disc;font-size:16px; }
ul > li { font-family:'Helvetica',Arial,sans-serif;margin:10px 0px 0px 0px !important;padding: 0px 0px 0px 0px !important; color: #2D2D2D; list-style:disc; }
ol { font-family:'Helvetica',Arial,sans-serif;margin: 0px 0px 0px 25px !important;padding:0px !important;color:#2D2D2D;line-height:24px;list-style:decimal;font-size:16px; }
ol > li { font-family:'Helvetica',Arial,sans-serif;margin:10px 0px 0px 0px !important;padding: 0px 0px 0px 0px !important; color: #2D2D2D; }
.e h3,
.e p,
.e span { padding-bottom:0px;padding-top:0px;mso-margin-top-alt:0px;mso-margin-bottom-alt:0px; }
.e span,
.e li { font-family:'Helvetica',Arial,sans-serif;font-size:16px;color:#2D2D2D;line-height:24px; }
.rec { font-family: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji" !important; }
.rec__button:hover { background-color: #f9fafb !important; }
.copyright a {color: inherit !important; text-decoration: none !important; font-size: inherit !important; font-family: inherit !important; font-weight: inherit !important; line-height: inherit !important;}
.txt_social p { padding: 0; word-break: break-all; }
.table, .table-c, .table-h { border: 1px solid #C0C0C0; }
.table-c { padding:5px; background-color:#FFFFFF; }
.table-c p { color: #2D2D2D; font-family:'Helvetica',Arial,sans-serif !important;overflow-wrap: break-word; }
.table-h { padding:5px; background-color:#F1F1F1; }
.table-h p { color: #2A2A2A; font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif !important;overflow-wrap: break-word; }
@media only screen and (max-width:667px) {
.aa, .w100pc { width: 100% !important; }
.bb img { width: 100% !important; height: auto !important; max-width: none !important; }
.cc { padding: 0px 8px !important; }
.ee { padding-top:10px !important;padding-bottom:10px !important; }
.ff ul, .ff ol { margin: 0px 0px 0px 10px !important;padding: 0px !important; }
.ff li { margin:10px 0px 0px 10px !important; }
.r {height:140px !important;}
.s p { font-size:13px !important;line-height:15px !important; }
.mob-hide {display:none !important;}
.mob-show {display: block !important; width: auto !important; overflow: visible !important; float: none !important; max-height: inherit !important; line-height: inherit !important;}
.mob-stack {width:100% !important;display:block !important;}
.mob-w-full {width:100% !important;}
.mob-block {display:block !important;}
.embed-img {padding:0px 0px 12px 0px !important;}
.socialShare {padding-top:15px !important;}
.rec { padding-left:15px!important;padding-right:15px!important; }
.bodyWrapper { padding:7px 4px 7px 4px !important; }
.social-mobile {float:left !important;margin-top:10px !important;}
}
@media screen and (max-width: 480px) {
u + .a .gg { width: 100% !important; width: 100vw !important; }
.tok-heart { padding-top:75% !important; }
.tok-play { padding-top: 250px !important; }
}
@media screen and (max-width: 320px) {
.tok-heart { padding-top:65% !important; }
}
.u { border: 1px solid #CACACA !important; border-radius: 2px !important; background-color: #ffffff !important; padding: 0px 13px 0px 13px !important; font-family:ui-sans-serif,system-ui,-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,"Noto Sans",sans-serif !important;font-size: 12px !important; color: #767676 !important; }
.u a { text-decoration: none; display: block !important; color: #767676 !important; margin: 0px !important; }
.u span, .u img { color: #767676 !important;margin:0px !important; max-height:32px !important;background-color:#ffffff !important; }
</style><!--[if mso]><style type="text/css">
h1, h2, h3, h4, h5, h6 {font-family: Arial, sans-serif !important;}
body, table, td, p, a, span {font-family: Arial, sans-serif !important;}
sup { font-size: 100% !important;vertical-align: .5em !important;mso-text-raise: -1.5% !important;line-height: 0 !important; }
ul { margin-left:0px !important; margin-right:10px !important; margin-top:20px !important; margin-bottom:20px !important; }
ul li { margin-left: 0px !important; mso-special-format: decimal; }
ol { margin-left:0px !important; margin-right:10px !important; margin-top:20px !important; margin-bottom:20px !important; }
ol li { margin-left: 0px !important; mso-special-format: decimal; }
li.listItem { margin-left:15px !important; margin-top:0px !important; }
.paddingDesktop { padding: 10px 0 !important; }
.edm_outlooklist { margin-left: -20px !important; }
.embedImage { display:none !important; }
</style><![endif]--><!-- __merge_tags_in_links__ --><style>
@font-face {
font-family: 'Open Sans';
font-style: normal;
font-weight: 700;
font-display: swap;
src: url('https://fonts.gstatic.com/s/opensans/v40/memSYaGs126MiZpBA-UvWbX2vVnXBbObj2OVZyOOSr4dVJWUgsg-1x4gaVIUwaEQbjA.woff2') format('woff2');
}
@font-face {
font-family: 'Open Sans';
font-style: italic;
font-weight: 700;
font-display: swap;
src: url('https://fonts.googleapis.com/css2?family=Open+Sans:ital,wght@1,700&display=swap') format('woff2');
}
</style></head><body class="a" style="margin:0px auto;padding:0px;word-wrap:normal;word-spacing:normal;background-color:#dedede;"><div role="article" aria-roledescription="email" aria-label="email_name" lang="en" style="font-size:1rem"><div style="display:none;max-height:0px;overflow:hidden;"> FreeFlow, DeepSeekMath-V2, Soft Adaptive Policy Optimization, and more  ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ </div><table role="none" width="100%" border="0" cellspacing="0" align="center" cellpadding="0" class="gg"><tr><td align="center" valign="top"><table role="none" width="670" border="0" cellspacing="0" cellpadding="0" class="aa" style="width:670px;table-layout:fixed;"><tr><td class="bodyWrapper" align="center" valign="top" style="padding:7px 7px 7px 7px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top" style="border-width:0px 0px 0px 0px;border-style: solid; border-color: #2a2a2a;border-radius:10px 10px 0px 0px;background-color:#ffffff;" class="c"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr id="header"><td style="padding:15px 15px 0px 15px;"><div style="padding-top:0px;padding-right:0px;padding-bottom:20px;padding-left:0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td class="f" align="right" valign="top"><p> December 02, 2025 | <a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.c6q0w4g5sodbtO4I1B_pxSdB5RCIH6yy1Fm1CYma3Ex9BLLxVMYy9ywSdgVGrzLpSwKGvlzYqj-Eap5OC9T24IRAElROzPeocTyf7px8TKbST881CqtwxX0StBHvjAd6fmigsdw7DQSNcsGh2bTczTQnfM2vbJ_ufPMciE3t_vXOyBE8DLMOxxMtVNir-v2kVFZXm1zWMdtRh7fUcOyQ5DOm1SOwhBL9FHFc10RovGkHoHSqZrmMPT8cVTS0rFkEBcH4xhRtb2ZAsOvhrD8wPQ7oqp0HIvNoibhIR1f7i10dZV39HU6nD2kfrIW9XrCBU6s3FTBExs_WoBBc6TzaEQTUo1es6iwVMxBjL5IQjWTYLAaRManZHBo0kLJAtIbtOY_XQu4nD60vGPGudkSatdTQhWb0EPqo225t55w5mXjCQPwerhOyRYUrtukq7RyRIY1lqGA-Z02NKC47I0AlXdt4frShRhGT9RoFTn7YdFNec8oET6LFrJGQmdeLGPzB7P_4wuRA1nZLqLET83U-QoJEOnM2rT5xzZbeP6Oy3pgY7ncbuAcDc6_p07zK1clWlaX9XfeuM935Tb2d81aL8Uisf-9lvPdIFJgNiuofmQoTgNDyveok7duaPd4T_-EYVHez3sZ_xMXQATiNIvT_xOIlLtF6myb4edSeBZ4l8T-pNzBgPu-Q5EWggXpVoU46sEcusLhSRAZU0NOWh1u5FFNMcbqc82Z_7BkyG4R3xIdYrJONxR3fhUdt0NXVhSZ6v9ElHB__UeDLDelWwqcWN5gfrrU3rTwXpBK3Bro7I9Smz7TremMez7-tRzQqfa2Y6pt0jlfuceHkMVmqSEX3JDH4PoKJTdaLjtXQwlcP92zvpfK3iVw1ikjFY1DKKPgM/4m3/cVLX7mO7RfiVwJrfbl4N3g/h0/h001.y8XY5gHHzCAa7_PsIVaIqgebj_dqnjLWwVy9qF4OAig"><span class="translation_missing" title="translation missing: en.templates.posts.email.header.read_online">Read Online</span></a></p></td></tr><tr><td class="dd" align="center" valign="top" style="padding:15px 0;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top"><h1 style="text-align:left;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-weight:Bold;font-size:32px;color:#2A2A2A;padding:2px 0;line-height:38px;"> DeepSeek-V3.2 Technical Report Is Pure Gold </h1><p style="text-align:left;font-family:'Helvetica',Arial,sans-serif;font-weight:normal;font-size:20px;color:#3E3E3E;padding:5px 0;line-height:24px;"> FreeFlow, DeepSeekMath-V2, Soft Adaptive Policy Optimization, and more </p></td></tr></table></td></tr><tr><td style="line-height:0;"><div data-open-tracking="true"> <img src="https://elink4f7.mail.bycloud.ai/ss/o/u001.3wmUuY8gEWd4_869a_eXcg/4m3/cVLX7mO7RfiVwJrfbl4N3g/ho.gif" alt="" width="1" height="1" border="0" style="height:1px !important;width:1px !important;border-width:0 !important;margin-top:0 !important;margin-bottom:0 !important;margin-right:0 !important;margin-left:0 !important;padding-top:0 !important;padding-bottom:0 !important;padding-right:0 !important;padding-left:0 !important;"/> </div></td></tr></table></div></td></tr><tr id="content-blocks"><td class="email-card-body" align="center" valign="top" style="padding-bottom:15px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td id="nov-18-th-nov-24-th-33-latest-ai-re" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:normal;padding:0px 28px;text-align:left;"><h6 style="color:#2A2A2A;font-weight:normal;mso-line-height-alt:87.5%;"><i>Nov 25th ~ Dec 2nd</i><br><i>#83 Latest AI Research Explained Simply</i></h6></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="industry-news-in-1-line" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;">🗞️ Industry News in 1 Line</h2></td></tr><tr><td style="padding-bottom:12px;padding-left:50px;padding-right:40px;padding-top:12px;" class="ee"><div style="margin-left:0px;" class="edm_outlooklist"><ol start="1" style="list-style-type:decimal;margin:0px 0px;padding:0px 0px 0px 0px;"><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;">♥ 1.6k</span></span> Mistral AI introduces <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DIqyAo9xTeoWriogq2VlWc9mMFXx1Bw7zdezeyKm3GQ7cFtSRcEWRdQQDHF2WptxYXhIgqLhtClNmDUxR144YXlMUXMw6_gPuc6Tljueyc-YkdNJRPjl3S0cG6nvxmrFLLmFX54YQ4AiLnOvMd_B8AkoWOZdoqRjBG3ydQozMLwunV2vEhSAfGYoOCVGck5_WWcnKgMSeGH9sTTmgkbVQ26YWk3B1h6vfrIwfM-dToCAz7qIXczR8_XFCwAIN8Lgxob-tD7MWmCTl3efRPOuwQ/4m3/cVLX7mO7RfiVwJrfbl4N3g/h1/h001.yFHzDyIlbO0blL6le2i6jMwBdSYC78FRRK5Sa168K1s" target="_blank" rel="noopener noreferrer nofollow"><span>Mistral 3</span></a>, an <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.CxDkkVpJsBdVoe83c_tBWno2StfHgkdXyV9QnRyXhkuAYQgOoFfjQ0lC8XIKUj-OUdUX5eItK9I0Myo7chDwRBKQIkxPrWhGCpMlZHClU68OCcS53OQmGn9p3KsF4V5sv5jITYj08KCpybNyQwiaHOPlL4FhT5SuSz1BxZLXr9mfIgA6J7Io55F-BnYwnDO0E6ga5qnQ5BBy6cT4EN5McjjZkd0grYn2I4DUjbYsin9BbWZr_UmOdlNd1dkeBdEeP7KY2AN-gYn02p-UcCzGwID4FueSZr6ZonAGRSRjQbU/4m3/cVLX7mO7RfiVwJrfbl4N3g/h2/h001.6T2P9Dh3q0dOwY15OcPLY8PpqV7feUfgUoegHX6Mhs4" target="_blank" rel="noopener noreferrer nofollow"><span>open-weight</span></a> model family, that includes three SoTA small, dense models (14B, 8B, and 3B) and Mistral Large 3, a sparse MoE trained with 41B active and 675B total parameters. </p><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:532px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/2475457e-348e-48fa-8d36-e5bdd15d6ffd/image.png?t=1764697231" alt="" height="auto" width="532" style="display:block;width:100%;" border="0"/></td></tr></table></li><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;">♥ 332</span></span> Arcee AI introduces <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DUiN96-Eq7pUHzwEhy5j2-5pLrw-NAtag3aIgM3R7UGYT3EDflJS-wWgprEFHsBKj9gB9bL6ROnCnexIzY4NB8wczYX3YuzYryH2TbeoMlRmmomkv90T3CThfmjlib1sOAh_fIT18ilPAS__v7Q2T87mKrv0AHUBkLbT-CDg_Sj_cVSbaqSnyYruxIxgIrCmGGLKcXSUo65n6NlOgorkkNvUJ21wNz2nBTgwh2bSTcNskSqrKcSTpDiGwM7IaItjsHRRq1vNVTbSsKbgrpcBWvGi3-ZCZg3fZvQALa26Rl8/4m3/cVLX7mO7RfiVwJrfbl4N3g/h3/h001.1mJl7I6rfWflqpIPQapErHs8M1n6y7WX5r5gmwEovoE" target="_blank" rel="noopener noreferrer nofollow"><span>Trinity</span></a>, an open-weight MoE family. Model series includes Trinity Nano Preview: 6B parameter MoE and Trinity Mini: 26B parameter MoE (3B active), fully post-trained reasoning model. </p><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:532px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/78866bc5-6e35-4a90-991d-55611cb7c34b/image.png?t=1764697427" alt="" height="auto" width="532" style="display:block;width:100%;" border="0"/></td></tr></table></li><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;">♥ 3.9k</span></span> Runway ML introduces <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.gXpuuKq1N_-6FJq3Q1UVsQyNThfB2XpSx1B7s6Mw10ObTYbvMkbSV2Pwogv3C6mEL7khOKOACKIOBt29znI7HFZd3nFSq7Z3FKxuFQDijPe1Pxmmx3HPlfap2ZKUx1vSxTCuxx-RlDho0zddznJ2TKWQDIkcWY_S0GFHfzTBbZczrRrO4D2W6JlR_4tLsELQdhhVSCMXOKcXgxsilMRgzm35kCnXANToz7Kh1KG7o3vOuA9Qoac6WPEmCW7heK63hZgQdgjYuL5N2IZp7He2cTd7_2PAbU9X1B88CLeXo1c/4m3/cVLX7mO7RfiVwJrfbl4N3g/h4/h001.Kz6GfcWfFAu3FnBy4QsSefdpk7GDpq2DozDTrU8J84k" target="_blank" rel="noopener noreferrer nofollow"><span>Gen-4.5</span></a>, a new SoTA video generation model. </p><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:438px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/c1b4e280-1065-4571-8722-5b7a0ea21ecb/image.png?t=1764697551" alt="" height="auto" width="438" style="display:block;width:100%;" border="0"/></td></tr></table></li></ol></div></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="transparent" style="background-color:transparent;border-color:#2C81E5;border-style:solid;border-width:5px;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;"><span style="">Support My Newsletter</span></h2></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="color:rgb(34, 34, 34);font-family:Georgia, "Times New Roman", serif;font-size:16px;">As I aim to keep this newsletter free forever, your support means a lot. If you like reading The AI Timeline, consider forwarding it to another research enthusiast. It helps us keep this up for free!</span></p></td></tr><tr><td align="center" valign="top"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top" style="font-size:0px;line-height:0px;padding:30px 0px 30px;" class="dd"><table class="j" role="none" width="50%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td> </td></tr></table></td></tr><tr><td class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;">Share The AI Timeline</h2></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> You currently have <strong>0</strong> referrals. </p></td></tr><tr><td align="left" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; display:none;width:0px;max-height:0px;overflow:hidden;mso-hide:all;height:0;font-size:0;max-height:0;line-height:0;margin:0 auto;" class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 0;"><tr><td align="center" valign="top" style="width:313px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.c6q0w4g5sodbtO4I1B_pxWc4htTObwdorovK0nFHVH-4pUdVE0ELYH5DsNemk732SjNwhPNJ25r0O8B5vYifsGNUqyW5TiZkyMsF1yreu0byy2KW36J1wDdpoLuXg2TU1F1OW8OHoHaU4-ZmrZpPU4RN-crQCEimD190CSn9fPuxpIRojBJyu1VfV5KtQD3QMVdSg2JrjEj5-xm4r4E12Whf08itqPCb9Q5W0X4rt3ubYkqCmWnLeZpmb3_RZcbIk0UE5wZnFLCQJHLFs0qZ0OGpXp89o1HU4mWIBur5Or4tQGm5M_Y8m5PvTEfYfxLRyrcRv7GyVs5oLtFfiySZ2SqtZypLA-h50h61p0uPiA7iA_PiMqlVLtM-87XL33VZi05_O3UTpWE_0nAzFRJ4TW1ayz3_vn4Zlp9IERdbnnD61McS5GXBelKUeBLoqNKgcYTm8jBGhEIGBJ873Uvp3cAjt7ndntRNWYvyp1zxe5bVJINXEvf7E6S3zJFyGKPhEAUH07GIYyJUh4q0K3Qf7uVy7zxaO7Fy5xtEe8xwz0wszRFNATYYlDPhCYEJp9qFmUqdQpzPaaopU0fl8pnCtXE-N-L87aoy89OG0kMV3j3imjejX2JfVdm-Aa6IYFM76mHx1Ee2CiTkXCVR5cvEk1CyKyntbxuA8eTpVizMJQU/4m3/cVLX7mO7RfiVwJrfbl4N3g/h5/h001.iycqqfck75VwvrDsnkF08REKpilkLE4rU--KS6-qql4" rel="noopener noreferrer nofollow" style="text-decoration:none;" target="_blank"><img src="" alt="" height="auto" width="313" style="display:block;width:100%;" border="0"/></a></td></tr></table></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:left;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="left" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.c6q0w4g5sodbtO4I1B_pxWc4htTObwdorovK0nFHVH-4pUdVE0ELYH5DsNemk732SjNwhPNJ25r0O8B5vYifsGNUqyW5TiZkyMsF1yreu0byy2KW36J1wDdpoLuXg2TU1F1OW8OHoHaU4-ZmrZpPU4RN-crQCEimD190CSn9fPuxpIRojBJyu1VfV5KtQD3QMVdSg2JrjEj5-xm4r4E12Whf08itqPCb9Q5W0X4rt3ubYkqCmWnLeZpmb3_RZcbIk0UE5wZnFLCQJHLFs0qZ0OGpXp89o1HU4mWIBur5Or4tQGm5M_Y8m5PvTEfYfxLRyrcRv7GyVs5oLtFfiySZ2SqtZypLA-h50h61p0uPiA7iA_PiMqlVLtM-87XL33VZi05_O3UTpWE_0nAzFRJ4TW1ayz3_vn4Zlp9IERdbnnD61McS5GXBelKUeBLoqNKgcYTm8jBGhEIGBJ873Uvp3cAjt7ndntRNWYvyp1zxe5bVJINXEvf7E6S3zJFyGKPhEAUH07GIYyJUh4q0K3Qf7uVy7zxaO7Fy5xtEe8xwz0wszRFNATYYlDPhCYEJp9qFmUqdQpzPaaopU0fl8pnCtXE-N-L87aoy89OG0kMV3j3imjejX2JfVdm-Aa6IYFM76mHx1Ee2CiTkXCVR5cvEk1CyKyntbxuA8eTpVizMJQU/4m3/cVLX7mO7RfiVwJrfbl4N3g/h6/h001.l07WZiKpYFdHXMGLycZAYdtSvTYCEYqi1iVC0xr5EMU" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Click to Share </a></td></tr></table></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Or copy and paste this link to others: <a class="link" href="https://mail.bycloud.ai/subscribe?ref=6SqUHb8KiF&_bhlid=bf7a73b936aab597b0df9777ef50b28c5a049d32" target="_blank" rel="noopener noreferrer nofollow" clicktracking="off"><span>https://mail.bycloud.ai/subscribe?ref=6SqUHb8KiF</span></a></p></td></tr><tr><td align="center" valign="top" style="font-size:0px;line-height:0px;padding:30px 0px 30px;" class="dd"><table class="j" role="none" width="50%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td> </td></tr></table></td></tr></table></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.zNfxTwpJFmrsCuJJphGRkKSrCVph9-fOYkcjx4VfJRyUw-Iv7GHKoTyxc57iFdcabeJrUAXVgdJXAkTcc7bS82ZF6NEkQHkUBgqGaM66RDbyMBpTK8pOBl6aVCc1cb8uf37hcdv2_4wdhn4aMASNC10rzXXeN0i0Gl5ftPjYrn05Ysh7HaJEX50LvIV2MjEOPeolewSRXebZk4YMocolGC4LmbuqmY5PfwaKO-llVI3xHEaFcrwEFIpIImHTqm36/4m3/cVLX7mO7RfiVwJrfbl4N3g/h7/h001.Rn8yN_8TknegrbtuVEOkISwm4n9OVTHuEcn2tXTXMt4" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Check Out My Patreon </a></td></tr></table></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style=""><a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.tLfGW26lAwaS9gFg17HSoGymQ3NNPtd5dE5MV_8UgjLbPKYFbBPtV6oAT4VYSncNiXOMe0ETHKViEemkGKRuti97gDsqlNJXOC9cMEoZt4vqGEMzd3CYIoAvubE-GTMMoAZK3mnHoXvLeLh8wSKZoeV70AhyhwU6uRXWpoCpVGJLjC7TPevrn4Y_NKoBzuEk_fcwpHf7yfLtiTAkLMI6IIk9M1Y1gKAotVVyO_4raUt05aeZqEPFDBw8xVG83vfPIJZHZqDJWNhM257W7cABiw/4m3/cVLX7mO7RfiVwJrfbl4N3g/h8/h001.zWRtpEeJZpbdADSNZIwqCJoDsWihPO2lOXIENU3PjCE" target="_blank" rel="noopener noreferrer nofollow"><span>Advertise with The AI Timeline! </span></a></span></p></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="soft-adaptive-policy-optimization" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h1 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:175.0%;">DeepSeek-V3.2 Tech Report</h1></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> DeepSeek Team </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 13k </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> LLM </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/8c808e62-2f48-4416-b1db-093aa9767a02/image.png?t=1764696879" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Benchmark of DeepSeek-V3.2</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><b>DeepSeek-V3.2</b> just achieved a huge milestone for open-source LLMs, effectively closing the performance gap to 0 with proprietary frontier models like Gemini-3.0-Pro, and even outperforming GPT-5-high. The model’s key architectural breakthrough is <b>DeepSeek Sparse Attention (DSA)</b>, which uses a lightweight "Lightning Indexer" to dynamically select the most relevant tokens (top-k). This reduces the heavy computational complexity of the core attention mechanism to near-linear levels <b>O(Lk)</b>, allowing for efficient processing of 128K context windows without performance degradation. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/7965bd9d-146a-4d77-bbd3-3d245bb5d90b/image.png?t=1764697855" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>The price of tokens vs token position</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Other than the architecture, the paper highlights a massive scaling of <b>Reinforcement Learning (RL)</b>, allocating over 10% of the pre-training compute budget to post-training. This is supported by a novel <b>Large-Scale Agentic Task Synthesis</b> pipeline, which generates thousands of synthetic environments (search, coding, data analysis) to boost the model's tool-use and agentic capabilities. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/5279d66f-5248-4bc7-8d2b-0b91f20a8363/image.png?t=1764696926" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Attention architecture of DeepSeek-V3.2</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> The release includes the standard <b>V3.2</b> which is a more balanced release, and <b>DeepSeek-V3.2-Speciale</b>, a high-compute, extended thinking variant with relaxed length constraints during RL. The <i>Speciale</i> model achieves reasoning parity with Gemini-3.0-Pro, achieving <b>Gold Medal performance</b> in both the 2025 International Mathematical Olympiad (IMO) and International Olympiad in Informatics (IOI), proving that open models can now rival the industry's best in complex reasoning tasks. </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> I highly recommend reading this research paper. Every part of it is well worth your time. </p></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.CxDkkVpJsBdVoe83c_tBWoNV4Z0gzLAqdXCVgcyx3wsmEMg5nw7JnMGZ7SvhfwkVtayborAGcbElYr5Dampxiq6mFMfT_kqRKQ0Cyx930xW3MO9Dj35jEkDqhxCnMmuiYZuaEyx9ggt9DyQFkZP3Bo1OuHPD-r_Bcv64t6M0OmfFW2Fe5QEyUj9UB09k349PCuE_Nb92POw9ppT3Xj23jesHfjUcXAo4X-DjwGN9saWC1c2B1RQ7bCYx6G2MiXH6n5KoeLOYRd4FjNtkQmtrqvxBW7CX8aaoOgHklniV1iMetm7BoUk_ayVL1vJYWpJs/4m3/cVLX7mO7RfiVwJrfbl4N3g/h9/h001.jQStA4LMR--2L6jpgCq7f3Bv4tZELuKNDxFPw3cBVPk" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="characterizing-control-between-inte" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;">Characterizing control between interacting subsystems with deep Jacobian estimation</h2></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Eisen<i> et al. [MIT, IBM Research]</i></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 436 </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> Understanding LLMs </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> It is very difficult to understand how different parts of a complex system, like brain regions, influence each other. This research introduces a new, data-driven method called <b>JacobianODE</b> that directly estimates the mathematical relationships governing these interactions from observed data alone. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/9b3a5311-be0e-49c9-8a56-d941dc1a35bb/CleanShot_2025-12-02_at_19.57.08_2x.png?t=1764685637" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Schematic overview of control-theoretic framework applied to neural interactions.</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> The core idea is to learn a system's Jacobian, which captures how a small change in one part affects the whole. JacobianODE trains a neural network to predict this Jacobian by ensuring its estimates are physically consistent. It uses path integration to predict future states and adds a clever self-supervised "loop closure" loss. This loss ensures that if you theoretically perturb the system in a loop, the total effect sums to zero, which forces the model to learn an accurate representation of how perturbations work in all directions, not just along observed paths. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/6c89efe9-d298-4daa-aad1-cda1d1634fa3/CleanShot_2025-12-02_at_19.58.00_2x.png?t=1764685690" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Jacobian estimation with JacobianODE models.</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Initial tests on chaotic systems like Lorenz models show JacobianODE estimates Jacobians much more accurately than other methods, even with noisy data. The researchers then applied it to a multi-area neural network trained on a memory task. They found the model could reveal how control between a "sensory" area and a "cognitive" area changed during learning, with the sensory area gaining more influence. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/a11d7185-4218-42dc-afe5-a4453429e298/CleanShot_2025-12-02_at_19.58.29_2x.png?t=1764685723" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Mean Frobenius norm error on Jacobian estimation for each system and noise level.</p></td></tr></table></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DIqyAo9xTeoWriogq2VlWfBdsJ2CghLHvEj8BYJx-cGfxbCDE13GApdyuvBS4iSX_cCumhGeE8aCC_f-dzV4kLFI4Lurdzjdjo925qu1EXc9eIWMxuvpKxgP8mcBajNKhUZyEFmRxeh7qZudRVRPIOcDP6FdpA-sKAl5wvd7_m0dwyEgl-2W9wiBaq9Vg-u2bpPSCvm-gB4ynl7emPMgdJpJ2XLBJG2pr0dxoMx1nEOf7pueWkxb4sZJsqbKOT9HzPKkSImXncIrgTo_jFPaZ7mbuXRndPE_izqR-EC83ijha4oKph8cQXqL0ZA3ItK6/4m3/cVLX7mO7RfiVwJrfbl4N3g/h10/h001.Zn8Uc7t3fSQR8dkArMP0XD632RTK06SAHiOC_1JMBmU" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="free-flow-flow-map-distillation-wit" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;">FreeFlow: Flow Map Distillation Without Data</h2></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Tong<i> et al. [New York University, MIT]</i></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 549 </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> Image Generation </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> bycloud’s pick </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Current flow models create great images but are slow because they require many iterative steps. A common trick to speed them up is "flow map distillation," where a fast student model learns to mimic a powerful, pre-trained teacher. But there's a catch: this process traditionally relies on an external dataset to generate examples for the student to learn from, which can lead to a "Teacher-Data Mismatch." If the static dataset doesn't fully represent what the teacher model can actually generate, the student learns from a flawed guide, limiting its potential. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/ee4beabb-b36b-41f3-aa76-869c1055cbd0/teaser.png?t=1764685812" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Teacher-Data Mismatch and the data-free alternative.</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> To solve this, the researchers developed a data-free method called FreeFlow. The core idea is elegantly simple: instead of using an external dataset, the student learns by starting only from random noise, known as the prior distribution. Since the teacher model is guaranteed to also start from this same noise when generating an image, it completely avoids the mismatch problem. The student learns by trying to predict the teacher's entire creative journey in one big jump. </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> It samples a noise vector and a random timestep, then tries to predict where the teacher's process would end up. The training forces the student's own internal "generating velocity" (the speed and direction it thinks the image should evolve) to match the teacher's true velocity at that point. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/eecdb57b-d3cb-4684-9fb6-9a11800ae3bb/tdm_impact.png?t=1764685866" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Impact of Teacher-Data Mismatch</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> It also aligns the student's "noising velocity," which is essentially the reverse process of turning a generated image back into noise. By ensuring this backward flow also matches the teacher's dynamics, the model can actively correct its mistakes and stay on the true path. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/2f55e89d-39cc-4634-bbca-9900c9d4e008/CleanShot_2025-12-02_at_20.02.29_2x.png?t=1764685958" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> When distilling from a top-tier teacher model, FreeFlow set a new state-of-the-art, achieving an impressive FID score of 1.45 on ImageNet at 256x256 resolution using just a single sampling step, significantly <b>outperforming</b> all data-dependent methods. This proves that an external dataset is not necessary for successful distillation. </p></td></tr><tr class="embed-gen-text"><td align="center" valign="top" style="padding:12px 27px 12px 27px;" class="dd"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top" class="o" style="padding:12px 12px 12px 12px;;background-color:#FFFFFF;border-color:#F1F1F1;border-radius:5px 5px 5px 5px;border-width:1px 1px 1px 1px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="left" valign="top" class="l"><p><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.9ggl6Mt0xphuuMReR5gVpYlQIwBcS-IOABL_fugkV_LYj0YCzY6tmE8ZFOCjk-yFj6ukOhC4Mc9lL0zGNkN0dtZESf6WWmEaKAtTaUBAymJ5hxcWF5bl-R2fQwCPJRZnsg7xbXKAh1DuJGxMPLuSu1YTu2K9mvnxfkyWAo4nerTkJCbjsqjVQDWIgLvgc0g4Qgj8p9q1_Iwzf_8IfDfurWnWorpJHkZheycBEg6HCoQBFFkVEESStnpEklHR0-2aDeyuQRp3Qenyr4TKi8hakQ/4m3/cVLX7mO7RfiVwJrfbl4N3g/h11/h001.Z4V7vmj_u_vKX2VtO_0dhMM22Gd5oWS3jhICLWX9aDE" style="text-decoration:none;font-style:normal;color:#2D2D2D !important;font-size:14px;line-height:20px;" target="_blank"> FreeFlow: Flow Map Distillation Without Data <tr><td align="left" valign="bottom" class="n" style="vertical-align:bottom;padding-top:12px;"><p style="word-break:break-word;">data-free-flow-distill.github.io</p></td></tr></a></p></td></tr></table></td></tr></table></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.fUNb4GdFo9D3F8WuLArtoZr-f6keVrG1GKuVv1wQKvp2G6RXe6oQQuACU9jZU0aWJAivPAHylhHFV4ak52I7H0z_XwA9LVM9M-YPQxoDp-qv2RIWPQI5YAHO7flat6WOFex1MxUUS6HmhkW9Ec06qGqZreeuk0Uck8eb7sUcx_rzBlSrBsYwTYlUVDugbYOloVeeTQerWGWkEzrILn2aEulhxqnNWJ8T2u-GBPdSTZXQn2DuoJg59gPEQDBsUkeMt0FTaIDf30wSvzl0myz5Iw/4m3/cVLX7mO7RfiVwJrfbl4N3g/h12/h001.Pj907HrlJEGYh3JiCEX8HgF5awFdwdk7ZHJl4YLDXJ4" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="how-to-correctly-report-ll-masa-jud" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;">How to Correctly Report LLM-as-a-Judge Evaluations</h2></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><i>Lee et al. [Yonsei University, University of Wisconsin–Madison, KRAFTON]</i></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 718 </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> LLM Training </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> We can not evaluate things like factual accuracy or code quality using LLMs as these AI judges aren't perfect and can make mistakes. This means the raw score they give us can be misleading, sometimes overestimating or underestimating true performance. This paper introduces a straightforward method to correct for this bias and provide a reliable confidence interval for the true accuracy. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/e0624616-a062-4386-8f5f-4f089367d7ac/figure.png?t=1764686706" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> There are two ways an LLM judge can be wrong: it might incorrectly label a correct answer as wrong, or it might mistakenly label a wrong answer as correct. The paper shows that if you know the LLM’s specific error rates, you can mathematically adjust the raw score to get a better estimate of the true accuracy. These error rates can be learned from a small calibration dataset where you know the true human-provided labels. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/4e012b1b-7099-494f-87e1-627c398f8245/CleanShot_2025-12-02_at_20.15.30_2x.png?t=1764686740" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> After making the correction, we can also measure our uncertainty. The new method constructs a confidence interval that accounts for randomness from both the main test dataset and the separate calibration dataset, giving a much more complete picture of how reliable the final accuracy estimate is. To make this process efficient, the paper also provides an adaptive algorithm that smartly decides how many calibration samples to collect for each type of answer, which helps minimize uncertainty for a given budget. </p></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.fUNb4GdFo9D3F8WuLArtoZr-f6keVrG1GKuVv1wQKvqu6X7TJvv9K9svgZeGclGeF6V5yBvVoZxZ6c0phsH0TbqihlRfmCJ6S939enfCdWT6W_xQxyBS6CUuRgjriGA7b_Dho2d5LWz2wrPB88huMxLs35XVhri5dJaEwjxefSISoLT5-lByzHVEPizrVN9Kp8me4k7N1vpIfOFl-XbVf15dgU0u-PgTPRa0lQwPZykYdozNDqCHWzL-eA7NvNju317QylPL0XWmCYpP3M4UOg/4m3/cVLX7mO7RfiVwJrfbl4N3g/h13/h001.E4OAnbR2apFS_csbS8qvW5VgXqbJwf1hjBpEtNLhLkY" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="deep-seek-math-v-2-towards-self-ver" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h1 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:175.0%;">DeepSeekMath-V2: Towards Self-Verifiable Mathematical Reasoning</h1></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Shao et al.<i> [</i>DeepSeek-AI<i>]</i></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 3.2k </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> LLM Reasoning </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Large language models have become incredibly skilled at solving math problems that have a final numeric answer, often performing at competition levels. However, getting the right answer doesn't always mean the logic used to get there was correct. This is a major issue for more advanced tasks like theorem proving, where the step-by-step reasoning itself is the real goal. DeepSeekMath-V2 tackles this by learning not just to generate proofs, but by checking and improving its own work. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/07ff384d-8cbd-4072-a88c-5d7464fc590c/CleanShot_2025-12-02_at_20.13.06_2x.png?t=1764686598" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Average proof scores on CNML-level problems by category and model, as evaluated by our verifier.</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Researchers first trained a separate "<b>verifier</b>" model to critique proofs. They gave it clear rules to follow, asking it to list any flaws it found and then assign a score. To make sure this verifier was trustworthy and wouldn't invent problems, they added a second layer called "<b>meta-verification</b>". This step reviews the verifier's own critiques to confirm they are accurate and justified, which significantly improved the quality of its feedback. </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Next, this reliable verifier was used to train a proof generator. The generator's goal is to <b>write proofs</b> that earn a high score from the verifier. Crucially, the generator was also trained to perform self-verification. It learns to write a proof and then immediately analyze it, just as the verifier would. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/2e7ee970-9f1c-4a84-8efe-724773460265/CleanShot_2025-12-02_at_20.14.00_2x.png?t=1764686652" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> On elite high-school and undergraduate competitions like the IMO and the Putnam exam, DeepSeekMath-V2 achieved gold-medal level performance, scoring 118 out of 120 on the Putnam. When allowed to iteratively refine its proofs based on its own verification, its success rates improved significantly. </p></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.VomAAYwkCjux8i_FMc4kJenfjI5JRwchmV1otB2zAaTBE0izwSEXmhP3Fb82bb-BceTCnOlT85NEy2yZgDWgp11eRSL2gM2qiJ4bqxxeSUeMUEGKxCz4TmJvz6fFkGNuB5mwB7i9sXz8LQyj8VFsf4JFkqSOIRq2rbAqLdRdoBLdDa68xHNdQnZMh2qwJSXYCUTGp9F3QShYdezSX6xFgTyi-ZZk56zFXdm-k7-INlYSvOr99Ttmpo8lT97LpLWckhG3xklZ2Ui_mlnK8FoG4B6x3DSdlLaa0jzEE7jD5cSR8NBHInSKvh55o9n1n7s4/4m3/cVLX7mO7RfiVwJrfbl4N3g/h14/h001._BUaprCl3xBNoP5YAwNpMfZaKmgVecSLyemS0fAAaks" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="soft-adaptive-policy-optimization" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h1 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:175.0%;">Soft Adaptive Policy Optimization</h1></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Gao<i> et al. [</i>Qwen Team<i>]</i></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 256 </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> LLM Training </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Training advanced AI models is tricky because fine-tuning them with reinforcement learning can often lead to unstable updates. This issue is caused by the high variance in the importance scores assigned to individual tokens, especially in complex models. </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> To solve this, researchers developed Soft Adaptive Policy Optimization (SAPO). Instead of a hard cutoff, SAPO uses a smooth, temperature-controlled gating function. For each token, this function smoothly reduces the influence of updates when the token's importance ratio is far from normal, rather than abruptly silencing it. This creates a continuous trust region. The system also uses two different temperature settings: one for positive updates and a larger one for negative updates. This makes the model more careful when reducing the probability of tokens, which is a more unstable operation, while still being receptive to positive feedback. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:15px;padding-right:15px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:626px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/c51c47b4-a566-41fc-b43e-02d31b4f3573/CleanShot_2025-12-02_at_20.06.55_2x.png?t=1764686224" alt="" height="auto" width="626" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:626px; padding: 4px 0px 4px 0px;"><p>Empirical validation of assumptions (A1)–(A2) on the MoE model</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> This soft approach is both sequence-coherent and token-adaptive. When most tokens in a sequence are well-behaved, SAPO acts like a sequence-level method, keeping the learning aligned with the overall goal. However, if a few troublesome tokens appear, it doesn't discard the entire sequence. It selectively dampens the noisy tokens while preserving the learning signal from the good ones, which makes training more sample-efficient and stable than methods that apply all-or-nothing clipping. </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> In tests on mathematical reasoning, SAPO showed better training stability and higher accuracy compared to GRPO and GSPO under the same compute budget. It also consistently improved performance when used to train the large Qwen3-VL model family across various tasks. </p></td></tr><tr class="btn_row"><td valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table width="100%" role="none" border="0" cellspacing="0" cellpadding="0" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle"><table role="none" border="0" cellspacing="0" cellpadding="0"><tr><td style="background-color:#2C81E5;border-radius:8px;mso-padding-alt:14px 20px;" class="btn"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DUiN96-Eq7pUHzwEhy5j28yjf9KIXZdsXoh1WlHvvKldc7dIr8OpiQg11Bb6uTbh5gwh-ObccNkzh_fsR6zLL4hII3Lcwo6Wlv12MYLzbwM8kTwtA8l4j1L8ClgRic15qTmm2LHwdP4_clInQUapymsSw9nbYjKaKl_r4gwEB6nyyrm8JVSEyChZqGlmbSd_woUa3MF4NYz1MX5Q-jpBZZ70h1FJYs5kfw97-cPPqAPW7IFyzzjNcZJksDHXrcOIpXIhEgyh54f4awlEaWgBvQ/4m3/cVLX7mO7RfiVwJrfbl4N3g/h15/h001.OhNyV0W3lzOGh6Q-8BOdJdZq5SiADX1RIQr7NfnQRDs" target="_blank" rel="noopener noreferrer nofollow" style="background-color:#2C81E5;border-radius:8px;color:#FFFFFF;display:inline-block;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-size:16px;font-weight:normal;line-height:18px;padding:14px 20px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr></table></td></tr></table></td></tr><tr><td align="center" valign="top"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td><tr><td class="b" align="center" valign="top" bgcolor="#2a2a2a" style="padding:0px 0px 0px 0px;border-style:solid;border-width: 0px 0px 0px 0px;border-color: #2a2a2a;border-bottom-left-radius:10px;border-bottom-right-radius:10px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top" bgcolor="#73ddff" style="padding:12px"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td><span style="padding-left:1px;"></span></td><td align="center" valign="middle" width="75" style="width:75px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.1muhFWIqieRYpaJ-FbWSCQqcWoV4NNHHr5SkP9THApWUO4S9eWSDBFDMKQ83N4CY1l4kXQTU9YnEEqXRrg_2uhS94rQOKDl60C6UO57Zu1mJCFi_zhfD-a_hnJHdTQ7EvujpVqzNSVXKi6GPo0fQDQPrmBnw6i996Ch2DP85bSJYWneM3sfBjZdffJqGfEfbfJiB6mkeI21TB8YntMOounrPHJgLWYkLlugND7K2fzYrG70caKLGCp8dwpBYTmLM/4m3/cVLX7mO7RfiVwJrfbl4N3g/h16/h001.jxuGZB3xmeRo2uQxWHO2hXfCzZlVoEMKGo6YfSpSHeA" style="text-decoration:none;"><img width="22" height="22" alt="tw" border="0" style="display:block;max-width:22px;color:Dark" src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/static_assets/x_dark.png"/></a></td><td align="center" valign="middle" width="75" style="width:75px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.amatuKKICSickUKplYJXmBoQnQ9VXnB2zTxBG4HeHBi5iti4l06m5fR1UTFq_vFgQaGMmutCjJbuBFU8WHbRj6heToGsiZHlry3dxu5DEimeQbpBAMyhKdSbaWrmIf3bV2Y1TLLjZaxknUboQP6LlvEW9whz8_bSQUHroqUoT2B1gQaZ5Xfx-y5MODiwjU7TaJIGAYmQNBwNEPq9ZfVeGtz4Y40Df4-LzrqOBhpSm0hQwzBQr_rKiC6gA1CDVEpR/4m3/cVLX7mO7RfiVwJrfbl4N3g/h17/h001.tnggJn0NbrcBLDAUJ0yUVRyvhwlnkgVJowCQxwAlKLs" style="text-decoration:none;"><img width="22" height="16" alt="yt" border="0" style="display:block;max-width:22px;color:Dark" src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/static_assets/youtube_dark.png"/></a></td><td><span style="padding-left:1px;"></span></td></tr></table></td></tr><tr><td height="10" style="line-height:1px;font-size:1px;height:10px;"> </td></tr><tr><td class="w" align="center" valign="top" style="padding:15px 15px 15px 15px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top"><p style="font-family:'Verdana',Geneva,sans-serif;color:#FFFFFF!important;"> Update your email preferences or unsubscribe <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.c6q0w4g5sodbtO4I1B_pxWc4htTObwdorovK0nFHVH-4pUdVE0ELYH5DsNemk732SjNwhPNJ25r0O8B5vYifsBhEpz-DJgyVFmavJPa0OyKRRnvw4o7XGyvIv7PRofnm8E17wLfZw-c1NlU0PT0cJT46yP9p1GSXDSNLzAcOhTqeaFx2VLARfAebZAgccrb1jrJXIFVIOjk9olo-nTPCm9hXmoDRlfFCZcOlbsgRUFSWHeN5lywYFBxHj7BjrjCLetZ6-rmHzr0MLbBPfgAyNzQUOBOvzRE4s4TEbrbPzdh0lvhPmLB7cceZ_4Nvy1h0e9Tahl9KZWeAZnaFNhWG97G_VATIR_XsUGoN4ZBQ3IihX4YxTAoocBZ-QTIonF5BeGS8PV1ZPuNKAdHr1F455Bbj3ryKig7n7Pn5mdsDJlhvR2xxo_GGRfSejk4rgZ3bOdkDcR0KsvEWcY8060I2WLv-gBjMdPj6Fc0Kn6RDcNpfMgXnBgqJdZGV2L5quIXofqA_1-pmufqvQE4Stf4uSt7Bb-4-fde5kiHBFdqztizOtfZytr-gPUITkwcBX_WbRw7JIxar70jXa4uPl3jJ5Lk-CfbW5XonsggwvLJsS2yqBHcIKZMvB6G61PLIa-EG0GAhn6wHMlZ_JQ8GyLT51iB96CTLfJ0bEioyLrFUJFR30TVvukF4BclHNIsT7OeHvfCOjKMqSjBpNliF__S_Qo6yGNm2RPBkZ4DgtNkjDwnrBNZJlYsALUnjapfjdsYVaLeK3KEbqAgZPZJsJ-T26TgGowtqMsquViK2mPqZtuP111Ly1JEk2uzjI3LhRhDrVTYIW9qEnT74iyperDDIKOELPdTJdJuOQLcSnnQLiQ8KL0SSJC5FjwNhGBzFRvY6OKKh-JwAV6fJRUo0pSns0tad3aANNS9fo5yKa8Kf_sA7Fk8vGXtwJtRIG0ePL3XEOK80EVsrH02Iza2WpQd6Ie2-QdAqUzn_prWLOrA0LFSIC7tX0XmHp7Ia8cwB2fw0I-dL_E2GmmT3UNxgDIdATg/4m3/cVLX7mO7RfiVwJrfbl4N3g/h18/h001.YxjF5D1x-Wxytu7k_bxLl-keVzYHVP0tca-biBM95MU" style="text-decoration:underline;text-decoration-color:#FFFFFF!important;color:#FFFFFF!important;"> here</a></p><p class="copyright" style="font-family:'Verdana',Geneva,sans-serif;color:#FFFFFF!important;"> © 2025 bycloudai </p><p style="font-family:'Verdana',Geneva,sans-serif;color:#FFFFFF!important;"> 228 Park Ave S, #29976, New York, New York 10003, United States </p></td></tr><tr style="display: table-row !important;"><td align="center" valign="top" style="padding-top:20px;" style="display:table-cell !important;"><table role="none" border="0" cellspacing="0" cellpadding="0" align="center" style="display:table !important;"><tr style="display:table-row !important;"><td class="u" align="center" valign="middle" height="32" style="height:32px;display:table-cell !important; max-height: 32px !important;margin:0px !important; background-color: #ffffff !important;"><a style="line-height:32px !important;text-decoration:none;display:block !important;" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DUiN96-Eq7pUHzwEhy5j28olDWFpV5DDKfdk_OdOKOiI5OPJHzstyZjiJA4barEhPwbnVtWpMcG4CoRmTx40fxua6rY84rVDHzrl22M5fmHwl6EOXGPGcji6MnZLvQMmg3adBIKUFCmz5BczNS2vwk8nvYtGKMyD8vKMnmdkT0An0eVMxPQWhlVORVG5ku6KHrLQY1ud1K48S3XLH898S7H48Zq1TAPI17STuDB2t7wmJBKVdHKXRPr33Q6ILCx3/4m3/cVLX7mO7RfiVwJrfbl4N3g/h19/h001.P_9Ka1Q5Jv37jE3YrzdUSa1qBaW3KraIfpLDFhY7aRc"><img src="https://media.beehiiv.com/output-onlinepngtools.png" width="16" alt="beehiiv logo" style="display:inline-block !important;max-width:16px !important; vertical-align:-3px !important;width: 16px !important;" border="0"/><span style="padding-left:11px !important;display: inline-block !important;">Powered by beehiiv</span></a></td></tr></table></td></tr><tr><td align="left" valign="top" height="2" style="height:2px;"><a href='https://elink4f7.mail.bycloud.ai/ss/c/u001.CxDkkVpJsBdVoe83c_tBWsHIaP4XNp0WgUYqLvHcKk_3uqk_KIkz4ddLinhFbud6JuxLFdSUhYnR7b1NSsmbtzXNGNblnEEMKUtkCAjkn8Y/4m3/cVLX7mO7RfiVwJrfbl4N3g/h20/h001.BpS3kS2XspSN-lPn9oYYnL-fkNhHcGC-1Uc-MK9kHPE' style="color: #2a2a2a !important; cursor: default; font-size: 1px; text-decoration: none;"> Terms of Service </a></td></tr></table></td></tr></table></td></tr></td></tr></table></td></tr></table></td></tr></table></td></tr></table></div></body></html>